Introduction to even-denominator FQHE: composite fermions

Tejas Deshpande Journal club: 11 November, 2014

Integer Quantum Hall Effect

- Phenomenology
 - von Klitzing sees IQHE in silicon MOSFET in 1980
 - Landau level Filling fraction or Hall conductivity:

• Landau level degeneracy = **total** number of flux quanta (N_{ϕ})

Fractional Quantum Hall Effect

• Phenomenology

- Tsui & Stormer see v = 1/3 in GaAs quantum well in 1982
- Landau level Filling fraction or Hall conductivity:

$$\nu = \left(\frac{e^2}{h}\right)^{-1} \frac{I}{V_{\rm H}} = \frac{N_{\phi}}{N_e}$$

• Partially filled **non-interacting** Landau level $(n + p/q \equiv p/q)$

Aharonov-Bohm Effect

- Quantum effect that lacks gauge invariance
 - Phase picked up by a quantum particle of charge q:

$$\varphi = \frac{q}{\hbar} \int_{\mathcal{C}} \mathbf{A}(\mathbf{x}) \cdot d\mathbf{x}$$

• Gauge choice and parameterization

$$A_{\theta}(r) = \frac{Ba^2}{2r} = \frac{B(\pi a^2)}{2\pi r} = \frac{\Phi}{2\pi r}$$

• Phase picked up for arc subtending angle θ in the circle

$$\varphi = \frac{q}{\hbar} \left[\frac{\Phi}{2\pi r} (r\theta) \right] = \theta \frac{N\phi_0 q}{h}$$

• Quantum of flux is defined as:

S:
$$\phi_0 = \frac{h}{e} \approx 4 \times 10^{-11} \text{ T} \cdot \text{cm}^2 \Rightarrow \quad \varphi = \left(\frac{q}{e}\right) N\theta$$

• For q = e and $\theta = \pi$ we have:

$$e^{i\varphi} = \begin{cases} +1 & N \text{ even} \\ -1 & N \text{ odd} \end{cases}$$

"Gauge invariance" in many disguises

- Laughlin's gauge argument
 - Quantization of Hall resistance from thought experiment

$$0 \le x \le L \qquad 0 \le y \le W$$

$$\phi_{\rm t} = \frac{B_y L^2}{4\pi} \equiv N\phi_0 \qquad \phi = B_z LW \equiv N_\phi \phi_0$$

g(E)

• Gauge choices

$$\mathbf{A}_{t} = \frac{N\phi_{0}}{L}\hat{\mathbf{x}} \qquad \mathbf{A} = -B_{z}y\,\hat{\mathbf{x}}$$

• Hamiltonian

$$H = \frac{1}{2m_{\rm b}} \left(\hbar \mathbf{k} + \frac{e}{c}\mathbf{A} + \frac{e}{c}\mathbf{A}_{\rm t}\right)^2$$
$$\Psi = \exp\left[-\mathrm{i}\frac{e}{\hbar c}\int^x \mathbf{A}_{\rm t} \cdot d\mathbf{l}\right]\Psi'$$
$$\Psi'(x, y) = \Phi(y)\mathrm{e}^{\mathrm{i}k_x x}$$

• Periodicity in x: $k_x = \frac{2\pi}{L}(j-N)$ g(E)

"Gauge invariance" in many disguises

• Superconductivity

- Also a macroscopic quantum effect like QHE
- Complex order parameter $\Delta = \Delta_0 e^{i\theta}$
- Flux quantization (Aharonov-Bohm effect)

$$\varphi = \frac{q}{\hbar} \int_{\mathcal{C}} \mathbf{A}(\mathbf{x}) \cdot d\mathbf{x}$$
$$A_{\theta}(r) = \frac{Ba^2}{2r} = \frac{B(\pi a^2)}{2\pi r} = \frac{\tilde{\phi}_0}{2\pi r}$$
$$\varphi = \frac{q}{\hbar} \left[\frac{\tilde{\phi}_0}{2\pi r} (r\theta) \right] = \theta \frac{\tilde{\phi}_0 q}{h}$$

• With cooper pair charge q = 2eand single-valued Δ

$$\tilde{\phi}_0 = \frac{h}{2e} \approx 2 \times 10^{-11} \text{ T} \cdot \text{cm}^2 = \frac{\phi_0}{2}$$

• Fundamental principle behind SQUIDs (Josephson effect)

- Experimental Background
 - Wide range of fractions discovered after the 1982 discovery

- Theoretical Background
 - Challenge: solve Schrodinger's equation

$$H\Psi = E\Psi$$

$$H = \sum_{j} \frac{1}{2m_{\rm b}} \left[\frac{\hbar}{i} \boldsymbol{\nabla}_{j} + \frac{e}{c} \mathbf{A}(\mathbf{r}_{j}) \right]^{2} + \frac{e^{2}}{\epsilon} \sum_{j < k} \frac{1}{|\mathbf{r}_{j} - \mathbf{r}_{k}|} + \sum_{j} U(\mathbf{r}_{j}) + g\mu \mathbf{B} \cdot \mathbf{S}$$

• Important energy/length scales

• Laughlin writes **many-body** wavefunction *ansatz* for a specific set of FQHE states with v = 1/m

$$\Psi_{1/m}(\{z_i\}) = \prod_{j$$

- Laughlin wavefunction
 - Laughlin wavefunction v = 1/m FQHE states (with units)

$$\Psi_{1/m}(\{z_i\}) = \prod_{j < k}^{N} \left(\frac{z_j - z_k}{\ell_{\rm B}}\right)^m \exp\left\{-\frac{1}{4\ell_{\rm B}^2} \sum_{\ell=1}^{N} |z_\ell|^2\right\}$$

- What does it mean?
 - 1. It vanishes as *any* two electrons approach each other due to:

 $\prod_{j < k}^{N} (z_j - z_k)^m \quad \Rightarrow \quad \text{repulsion between electrons}$

2. Larger $m \Rightarrow$ electrons farther apart \Rightarrow larger angular momentum $m = \frac{N_{\phi}}{N_e} \Rightarrow \text{ larger } m \Rightarrow \text{ lower electron density}$

3. Electrons within ℓ_B feel "attraction" to the origin; analogous to classical 2D plasma \Rightarrow Boltzmann probability distribution

$$\Psi_m(\{z_i\})|^2 = \exp\{-\beta\phi(\{z_i\})\}$$

$$\phi(\{z_i\}) = -2m^2 \sum_{j < k} \ln|z_j - z_k| + \frac{m}{2} \sum_{\ell=1}^N |z_\ell|^2$$

- Laughlin quasiparticle
 - Laughlin wave function describes ground state of charge *e* electrons
 - Where do charge *e/m* anyons come from?
 - Excitations create anyons. What causes excitations?

FQHE: Haldane's hierarchical structure

- "Daughter" states
 - Haldane proposed hierarchical construction for other fractions

• FQHE of Laughlin quasiparticles of the 1/m state

FQHE: Review of the K-matrix

- Example of v = 2/5 and 3/7: "Shut up and calculate!"
- Chern-Simons effective theory $\mathcal{L} = -\frac{1}{4\pi} \varepsilon^{\mu\nu\lambda} K_{\mathrm{IJ}} a_{\mathrm{I}\mu} \partial_{\nu} a_{\mathrm{J}\lambda} + \frac{e}{2\pi} q_{\mathrm{I}} \varepsilon^{\mu\nu\lambda} A_{\mu} \partial_{\nu} a_{\mathrm{I}\lambda} + l_{\mathrm{I}} a_{\mathrm{I}\mu} j^{\mu}$ $\frac{2}{5}$ • Formulas for v and quasiparticle charge (Q) $\nu = \mathbf{q}^T K^{-1} \mathbf{q} \qquad \qquad Q = |e| \mathbf{q}^T K^{-1} \mathbf{l}$ • v = 2/5 from Laughlin state v = 1/3 $\frac{4}{9}$ $\mathbf{q} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad K = \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \quad \mathbf{l} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\nu = \begin{pmatrix} 1 & 0 \end{pmatrix} \left\{ \frac{1}{5} \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \right\} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{2}{5} \qquad Q = |e| \begin{pmatrix} 1 & 0 \end{pmatrix} \left\{ \frac{1}{5} \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \right\} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\frac{|e|}{5}$ • v = 3/7 from daughter state v = 2/5

$$\mathbf{q} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad K = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \qquad \mathbf{l} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

• K matrix dimension equal to the hierarchy level

Composite fermion "trick" (or theory)?

• Mapping to IQHE

• Composite particle by "attaching" even (2*p*) flux quanta (*h*/*e*)

 $B = B^* + 2p\rho\phi_0$

• Real and effective filling factors

$$\nu = \frac{\rho \phi_0}{B}$$
 $\nu^* = \frac{\rho \phi_0}{B^*}$ $\nu = \frac{\nu^*}{2p\nu^* \pm 1}$

• Physical picture of flux attachment: real electron + 2*p* fluxes ⇒ "composite fermion" (CF)

CF Landau level (Λ level) degeneracy
= total effective flux quanta

$$N_{\phi}^{\text{eff}} = N_{\phi} - 2pN_{e}$$

IQHE ground state

FQHE ground state

Composite fermion "trick" (or theory)?

- What about Laughlin quasiparticles?
 - CFs carry charge -*e* and spin 1/2
 - Consider ground state at *arbitrary* $v(v^*)$

$$\nu = \frac{\nu^*}{2p\nu^* + 1}$$

• Degeneracy of each Λ level:

$$N_{\phi}^{\text{eff}} = N_{\phi} - 2pN_{e}$$

- Add a **real** electron to $(v^* + 1)^{\text{th}} \Lambda$ level (*local* excitation)
- Modified degeneracy of each Λ level: $\tilde{N}_{\phi}^{\text{eff}} = N_{\phi} 2p(N_e + 1)$ = $N_{\phi}^{\text{eff}} - 2p$
- Each Λ level contributes to 2p CF-quasiparticle excitations
- Total $(2pv^* + 1)$ CF-quasiparticles = external electron
- Charge on each CF quasiparticle

$$Q = \frac{-e}{2p\nu^* + 1}$$

Halperin-Lee-Read (HLR) phase

- Theory of the half-filled "Landau level"?
 - Does the composite fermion picture have *any* predictive power?
 - HLR make hypothesis if Fermi liquid state at v = 1/2 in 1993

HLR phase: Chern-Simons Theory

- Mathematical flux attachment
 - Simplest Hamiltonian of FQHE

$$H = \frac{1}{2m^*} \int d^2 \mathbf{r} \ \psi_{\rm e}^{\dagger} (-\mathrm{i} \boldsymbol{\nabla} + e\mathbf{A})^2 \psi_{\rm e} + V$$

• Attach flux via gauge transformation

• Transformed Hamiltonian

$$H = \frac{1}{2m^*} \int d^2 \mathbf{r} \ \psi^{\dagger} (-\mathbf{i} \nabla + e\mathbf{A} - \mathbf{a}(\mathbf{r}))^2 \psi + V \qquad \mathbf{a}(\mathbf{r}) \equiv \tilde{\phi} \int d^2 \mathbf{r}' \frac{\hat{\mathbf{z}} \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^2} \rho(\mathbf{r}')$$

- Fictitious magnetic field: $\mathbf{b}(\mathbf{r}) \equiv \mathbf{\nabla} \times \mathbf{a}(\mathbf{r}) = 2\pi\rho(\mathbf{r})\tilde{\phi}$
- Fictitious and external (real) B-field cancel on average at exactly v = 1/2 $B_{\text{eff}} = B - \langle b(\mathbf{r}) \rangle = B - 2\pi \tilde{\phi} n_{\text{e}}$

Composite fermion "theory"!

- Experimental verification
 - Most important parameters of a Fermi liquid?

 $k_{\rm F} = \sqrt{4\pi n_e} \qquad m_{\rm eff}$

• Testing biggest hypothesis: do quasiparticles really see B_{eff} ?

 $B_{\rm eff} = B - B_{\nu=1/2}$

• Yes! Surface acoustic wave (SAW) experiment on $\nu = 1/2$ prove composite Fermi liquid hypothesis

To spectrum

Composite fermion "theory"!

- Surface acoustic wave (SAW) propagation experiment
 - HLR predicted SAW resonance for probe wavelength less than CF mean free path (ℓ)

$$\frac{\Delta v}{v} = \left(\frac{\alpha^2}{2}\right) \frac{1}{1 + \left(\frac{\sigma_{xx}(\omega, q)}{\sigma_{\rm m}}\right)^2}$$

AlGaAs

GaAs

To spectrum

Substrate

analyzer

Composite fermion "theory"!

- Mass of a composite fermion
 - Cyclotron gap between Λ levels?

$$\Delta = \hbar \omega_{\rm c}^* = \frac{e\hbar \Delta B}{m^*}$$

Odd-denominator states as "composite bosons"

- Non-composite fermion flux attachment schemes
 - Heike Kamerlingh Onnes produces liquid ⁴He on 10 July, 1908
 - On 8 April, 1911 he discovered superconduct-ivity in a solid Hg wire at 4.2 K
 - Quantum origins of superconductivity a mystery until 1957

Einstein, Ehrenfest, Langevin, Kamerlingh Onnes, and Weiss at a workshop in Leiden October 1920. The blackboard discussion, on the Hall effect in superconductors

Closing remarks: spin DOF?

- QHE in GaAs
 - Heike Kamerlingh Onnes produces liquid ⁴He on 10 July, 1908
 - On 8 April, 1911 he discovered superconductivity in a solid Hg wire at 4.2 K
 - Quantum origins of superconductivity a mystery until 1957

Einstein, Ehrenfest, Langevin, Kamerlingh Onnes, and Weiss at a workshop in Leiden October 1920. The blackboard discussion, on the Hall effect in superconductors

Closing remarks: edge states?

- Composite Fermi liquid or Luttinger liquid?
 - Heike Kamerlingh Onnes produces liquid ⁴He on 10 July, 1908
 - On 8 April, 1911 he discovered superconduct-ivity in a solid Hg wire at 4.2 K
 - Quantum origins of superconductivity a mystery until 1957

Next time: even-denominator "plateaus"

- Moore-Read state (v = 5/2 = 2 + 1/2)
 - Effects of composite fermion formation
 - Absorb flux \Rightarrow metal in zero B-field at even denominators
 - Absorb interactions \Rightarrow mass of composite fermions

- Residual B-field \Rightarrow IQHE of composite fermions \Rightarrow odd denominators
- Residual interactions \Rightarrow back to intractable interacting problem?
- Attractive interactions? ⇒ BCS instability?

Thanks for listening

