
Recap: U(1) slave-boson formulation of t-J model and 
mean field theory 
• Mean field phase diagram 

Label State χ Δ b 
I Fermi liquid ≠ 0 = 0 ≠ 0 
II Spin gap ≠ 0 ≠ 0 = 0 
III d-wave 

superconducting 
≠ 0 ≠ 0 ≠ 0 

IV uRVB ≠ 0 = 0 = 0 



SU(2) slave-boson formulation of t-J model and mean 
field theory 
• Mean field phase diagram 

U(1) 



I. Introduction 

• Discovery 
 

• Discovered in 2008 by Kamihara et al. in LaFeAsO with Tc = 26 K 
 

• Similarities with the cuprates 
 

• High-Tc 
 

• quasi-2D 
 

• Almost universal phase diagram 

A. Aim and scope 



I. Introduction 
B. Fe-based superconductors 

• Important questions 
 

• What is the gap structure? 
 

• What is pairing mechanism? 
 

• What is the role of disorder in experiments? 

• Comparison with cuprates 
 

• Gap structure unclear after following 
experiments: 

 

• Penetration depth 
 

• ARPES 
 

• NMR 
 

• Phase sensitive Josephson 
tunneling 



I. Introduction 

• Comparison with cuprates 
 

• Fe has weaker interactions 
 

• 2p-ligands (e.g. As) lie out of Fe plane 
 

• Multiple bands near the Fermi energy 
 

• Undoped or parent compounds are 
poor metals with SDW order 
 

• Coexistence of superconductivity and 
magnetism 
 

• No robust pseudogap region 
 

• Doping involves in-plane and out-of-
plane substitution, e.g. Sr1-xKxFe2As2, 
Ba(Fe1-xCox)2As2, etc. 

B. Fe-based superconductors 



I. Introduction 

• Comparison with MgB2 
 

• First example of multigap superconductivity 
 

• Tc = 40 K  higher than first cuprate! 
 

• Type-II multiband BCS superconductor 

B. Fe-based superconductors 

• Conceptual importance 
 

• Not an improvement from practical standpoint 
 

• Tc lower than cuprates (maximum 55 K) 
 

• Expensive to fabricate and difficult to work with 
 

• Pnictides demonstrated cuprate properties are not unique to high-Tc 
 

• Differences in cuprates and pnictides highlight critical ingredients of high-Tc 
 



I. Introduction 

• Families of pnictides/chalcogenides 
 

• 1111 family  LaFeAsO  LaFeAsO1-xFx 
 

• 122 family  SrFe2As2 
 

• 111 family  LiFeAs 
 

• 11 family  FeTe 

B. Fe-based superconductors 



I. Introduction 

• Gap symmetry and structure 
 

• Experiments ruled out triplet pairing 
 

• s-wave and d-wave have different 
symmetry 
 

• s++ and fully gapped s± make sense in 
multiband picture 
 

• Gap symmetry  phase change in k-space 
 

• Singlet vs. triplet  phase change in spin-
space (no spin-orbit coupling) 
 

• Gap “structure”  everything else! e.g. 
phase change across Fermi sheets 

B. Fe-based superconductors 



II. Electronic structure 

• Multiband nature 
 

• Unit cells  “folded” (blue) and “unfolded” (green) 
 

• Treat height of Arsenic as a perturbation 
 

• Simplest model in “unfolded” zone 

B. Minimal band models 

• Fermi sheets for electron-hole doped case (Fe2+  3d6) 



III. Theoretical background 

• Historical: ferromagnetic spin fluctuations 
 

• Transition metals near ferromagnetism 
 

• Exchange of “paramagnons” 

A. Spin fluctuation pairing 



III. Theoretical background 

• Antiferromagnetic spin fluctuations 
 

• Susceptibility strongly peaked near Q 
 

• Singlet interaction (always repulsive) 

A. Spin fluctuation pairing 

• Self-consistent BCS gap equation 

• Solution possible for 

• In cuprates, χ is peaked at Q = (π, π) 

• In pnictides, χ is peaked at Q = (π, 0)  s± 
pairing 



III. Theoretical background 

• Spin fluctuation pairing in multi-orbital systems 

A. Spin fluctuation pairing 

• Effective pair scattering vertex between bands i and j in the singlet channel 

• Orbital vertex functions 

Charge/orbital fluctuations 

Spin fluctuations 

Hund’s coupling 



III. Theoretical background 

• Results of microscopic theory 
 

• Gap symmetry and structure 

A. Spin fluctuation pairing 

• Orbital vertex functions 



III. Theoretical background 

• Physical origins of anisotropy of pair state and node formation 

A. Spin fluctuation pairing 

• Intra-orbital pairing between α and β Fermi 
sheets  favors s± 
 

• Sub-leading inter-orbital between β1 and β2 
Fermi sheets  favors nodes  frustrates 
s± 
 

• Hole doping (n < 6)  appearance of γ 
pocket 
 

• Appearance of γ pocket  β1-β2 scattering 
causes weaker s± frustration 

• Height of Arsenic above Fe-plane  appearance of γ pocket and isotropy 
of s± state in 1111 family 



III. Theoretical background 
B. Alternative approaches 

electron 

phonon 

Orbital 
fluctuation • Cannot have   for purely electronic 

interactions 

• Excitonic Superconductivity 
 

• Proposed by Little and Ginzburg 
 

• Exciton + phonon  CDW  suppress super-
conductivity 

• Orbital fluctuations 
 

• Ordering of Fe 3d orbitals possible 
 

• Recall Hamiltonian 



V. Gap structure 

• Spin-resonance peak 
 

• Neutron scattering  dynamical spin 
susceptibility 

A. Does the gap in FeBS change sign? 



V. Gap structure 

• Josephson junctions 
 

• d-wave symmetry of cuprates 
confirmed by Josephson effect 
 

• Phase shift of π between orthogonal 
planes 
 

• Unfortunately pnictides don’t have 
spatial anisotropy 
 

• Phase difference across electron and 
hole Fermi sheets for s± pairing 
 

• Solution  Measure Josephson 
effect across epitaxially grown 
interface between electron- and hole-
doped pnictide 

A. Does the gap in FeBS change sign? 

d-wave



V. Gap structure 

• Quasiparticle interference ∝ 

A. Does the gap in FeBS change sign? 

• QPI in the Pnictides  no “hot spots” 
 

• Bragg vs. QPI? 

• QPI in the Cuprates 



V. Gap structure 

• Coexistence of magnetism and superconductivity 

A. Does the gap in FeBS change sign? 

• Co-doped BaFe2As2  Microscopic 
coexistence of weak antiferromagnetism 
and superconductivity 
 

• s± or s++ states coexists with SDW 
 

• In-plane thermal conductivity experiment 
 no c-axis nodal lines 
 

• s++ pairing  SDW-induced BZ band 
folding  c-axis line nodes  s++ pairing 
cannot coexist with SDW 



V. Gap structure 

• Evidence for very low energy excitations consistent with gap nodes 
 

• Bulk probes provide consistent picture of the evolution of the low-energy 
quasiparticle density across the phase diagram 

B. Evidence for low-energy subgap excitations 



V. Gap structure 

• Penetration depth 
 

• Δλ ∝ exp(-Δmin/T)  fully gapped 
(optimally doped Ba1-xKxFe2As2) 
 

• Δλ ∝ T  line nodes (1111 family) 
 

• Δλ ∝ T2  disorder (122 family) 

B. Evidence for low-energy subgap excitations 



V. Gap structure 

• Specific heat 
 

• Nodes  Volovik effect  C/T ∝ H1/2 
 

• Fully gapped  vortex cores states  C/T ∝ H 
 

• Fe(Te,Se) specific heat oscillations 

B. Evidence for low-energy subgap excitations 



V. Gap structure 

• The ARPES “paradox” 
 

• The most direct probe of gap structure  proved d-wave 
pairing in cuprates 
 

• No ARPES study has seen nodes in the gap 
 

• Possible explanations of the paradox 
 

• Surface electronic reconstruction 
 

• Surface DFT on BaFe2As2  additional dxy pocket 
 

• dxy pocket stabilizes isotropic pair state 
 

• Surface depairing 
 

• Surface roughness  in-plane intraband scattering  
destroys gap anisotropy 
 

• Resolution issues 

B. Evidence for low-energy subgap excitations 



Summary 
• Bardeen-Cooper Schrieffer (conventional) superconductors 

 

• Discovered in 1911 by Kamerlingh-Onnes 
 

• Fully gapped Bogoliubov quasiparticle spectrum 
 

• Important effects 
• Vanishing resistivity 
• Meissner effect (London penetration depth) 
• Coherence effects (coherence length) 

• Heavy-fermion superconductors 
 

• Discovered by Steglich et al. in 1979 
 

• Key ingredients 
• Lattice of f-electrons 
• Conduction electrons 

 

• Multiple superconducting phases 



Summary 
• Electronic structure 

 

• Relevant physics confined to 2D 
 

• The “t-J” model 
 

 
 
 

• Universal phase diagram 
 

• Phenomenology of the cuprates 
 

• Experimental signatures of the 
pseudogap phase 
 

• Nodal quasiparticles 
 

• Slave bosons 
 

• Slave fermions and bosons 
 

• U(1) & SU(2) gauge theory 



• Iron-based (pnictide) superconductors 
 

• Discovered in 2008 by Kamihara 
 

• Physics confined to 2D like cuprates 
 

• Pseudogap replaced by “nematic phase” 

Summary 

• Gap structure 
 

• Theory and some experiments  s±  
 

• Contradictory experimental evidence 
 

• ARPES 
 

• Specific heat 
 

• Penetration depth 





• Heavy fermion materials 
 

• Not limited to superconductivity 
 

• e.g. Kondo topological insulators 
 

• Exotic topics motivated by the 
cuprates 

 

• Gauge theories and confinement 
physics 
 

• Quantum critical point (QCP) 
 

• Competing interpretations of 
cuprate high-Tc? 

 

• Stripe or no stripe? 
 

• Is slave boson picture nonsense? 

Future Topics 
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