
Last time: BCS and heavy-fermion superconductors 
• Bardeen-Cooper Schrieffer (conventional) superconductors 

 

• Discovered in 1911 by Kamerlingh-Onnes 
 

• Fully gapped Bogoliubov quasiparticle spectrum 
 

• Important effects 
• Vanishing resistivity 
• Meissner effect (London penetration depth) 
• Coherence effects (coherence length) 

• Heavy-fermion superconductors 
 

• Discovered by Steglich et al. in 1979 
 

• Key ingredients 
• Lattice of f-electrons 
• Conduction electrons 

 

• Multiple superconducting phases 
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I. Introduction (cuprates) 
• Discovery 

 

• Bednorz and Müller reported Tc ≈ 30 K 
in Ba-doped La2CuO4 in 1986 
 

• Highest BCS superconductor was Nb3Ge 
with Tc = 23.2 K 
 

• N2 barrier  Tc > 77 K in YBCO 
 

• “Universal” phase diagram 



II. Basic electronic structure of the cuprates 
• Lattice, bonding, and doping 

 

• Relevant energy scales: 
 

• t  hopping energy 
 

• Ud  double-occupancy penalty 

• La2CuO4: La3+, Cu2+, O4–; 1 hole doped by La3+ → Sr2+ 
 

• La1.85Sr0.15CuO4 (LSCO)  Tc ≈ 40 K 
 

• YBa2Cu3O7: Y3+, Ba2+, Cu2+, O4–; already hole doped! 
 

• YBa2Cu3O7–ε (YBCO)  Tc ≈ 93 K  



II. Basic electronic structure of the cuprates 
• Theoretical modeling 

 

• The “t-J model” Hamiltonian 

• Projection operator P restricts the Hilbert space to one 
which excludes double occupation of any site 
 

• Next-nearest (t′) and next-next-nearest (t′′) hopping 
gives better fits to data 

• A non-zero t′ accounts for asymmetry 
in electron and hole doped systems 
 

• Weak coupling between CuO2 layers 
gives non-zero Tc 
 

• Cuprates are “quasi-2D”  2D layer 
describes the entire phase diagram 
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III. Phenomenology of the underdoped cuprates 

• Magnetic properties 
 

• NMR/Knight shift on YBCO (Tc = 79 K) 
 

• χs is T-independent from 300 K to 700 K 
 

• χs drops below Heisenberg model expectation 
before Tc 
 

• Strongly points to singlet formation as origin of 
pseudogap 

A. The pseudogap phenomenon in the normal state 



III. Phenomenology of the underdoped cuprates 

• Specific heat 
 

• Linear T-dependence of specific heat 
coefficient γ above Tc 
 

•  γ for YBa2Cu3O6+y for different y; optimally 
doped curves in the inset 
 

•  γ for La2-xSrxCuO4 for different x; overdoped 
curves in the inset 
 

• γ at Tc reduces with decreasing doping 

A. The pseudogap phenomenon in the normal state 



III. Phenomenology of the underdoped cuprates 

• DC Conductivity 
 

• Anomalous linear-T “normal” state resistivity 
 

• AC Conductivity 
 

• In-plane (CuO2 plane) conductivity (σa) only 
gapped below Tc 
 

• Perpendicular conductivity (σc) gapped in the 
pseudogap phase 

A. The pseudogap phenomenon in the 
normal state 



III. Phenomenology of the underdoped cuprates 

• ARPES 
 

• Superconducting gap exhibits nodes 
 

• Pseudogap opens at (π/a, 0) 
 

• Luttinger’s theorem  Fermi surface volume = 1 – x 
 

• Spectral weight in coherence peak vanishes with 
decreasing hole doping 

A. The pseudogap phenomenon in the normal state 



III. Phenomenology of the underdoped cuprates 

• STM 
 

• Surface inhomogeneity in the gap function 
 

• STM sees two dips  first dip is indication of 
pseudogap state 

A. The pseudogap phenomenon in the normal state 
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III. Phenomenology of the underdoped cuprates 

• Stripe order 
 

• Observed in LSCO at doping of x = 1/8 
 

• Charge density wave (CDW) periodicity = 4 
 

• Spin density wave (SDW) periodicity = 8 
 

• Neutron scattering 
 

• Scattering peak at q = (π/2, π/2) 
 

• Incommensurability (δ) scales with doping (x) 
 

• “Fluctuating stripes” apparently invisible to 
experimental probes 
 

• Fluctuating stripes “may” explain pseudogap 
and superconductivity 

B. Neutron scattering, resonance and 
stripes 
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III. Phenomenology of the underdoped cuprates 

• Volovik effect 
 

• Shift in quasiparticle energies 

C. Quasiparticles in the superconducting state 

• Original quasiparticle spectrum 

• Nodal quasiparticle disperses like “normal” current 

• Phase winding around a vortex 

• Field-dependent quasiparticle shift 



III. Phenomenology of the underdoped cuprates 

• Nodal quasiparticles 
 

• Universal conductivity per layer 

C. Quasiparticles in the superconducting state 

• Antinodal gap obtained from extrapolation 

• Phenomenological expression for linear-T 
superfluid density 

• London penetration depth shows α = constant 
 

• Slave boson theory predicts α ∝ x 
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IV. Introduction to RVB and a simple explanation of the 
pseudogap 
• Resonating Valence Bond (RVB) 

 

• Anderson revived RVB for the high-Tc problem 
 

• RVB state “soup” of fluctuating spin singlets 



IV. Introduction to RVB and a simple explanation of the 
pseudogap 
• Deconfinement of “slave particle” 

 

• We can “split” an electron into charge and spin degrees of freedom 
 

• Purely spin degrees of freedom  “spinons” 



IV. Introduction to RVB and a simple explanation of the 
pseudogap 
• Resonating Valence Bond 

 

• Anderson revived RVB for the 
high-Tc problem 
 

• Potential explanation of the 
pseudogap phase 

• Holes confined to 2D layers 
 

• Vertical motion of electrons needs 
breaking a singlet  a gapped excitation 
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• London penetration depth inferred from 
μSR rate 

V. Phase fluctuation vs. competing order 

• Factors influencing Tc 
 

• London penetration depth for field 
penetration perpendicular to the ab plane 

• Indication of intralayer bose condensation 
of holes from μSR 



V. Phase fluctuation vs. competing order 

• Tc as a function of phase stiffness 
 

• Phase stiffness of the order parameter 

A. Theory of Tc 

• The BKT transition; energy of a single vortex 

• Relation between phase stiffness and Tc 

• Cheap vortices 
 

• Suppose TMF is described by the standard BCS theory 

• EF ≈ Ec ≫ kBTc  Pseudogap mostly superconducting  Ec is clearly 
not of order EF 
 

• Ec ≈ Tc ≈ Ks  notion of strong phase fluctuations is applicable only on 
a temperature scale of 2Tc 



V. Phase fluctuation vs. competing order 

• Nernst effect 
 

• Transverse voltage due to longitudinal 
thermal gradient in the presence of a 
magnetic field 
 

• Nernst region as second type of pseudogap 
 explained by phase fluctuations 
 

• The first type of pseudogap explained by 
singlet formation 

B. Cheap vortices and the Nernst effect 
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VI. Projected trial wavefunctions and other numerical 
results 

• Anderson’s original RVB proposal 

• The Gutzwiller projection operator 

• Projection operator too complicated to treat 
analytically 
 

• Properties of the trial wave function evaluated using 
Monte Carlo sampling 
 

• Wave function ansatz 
 

SC: superconducting without antiferromagnetism 
SC+AF: superconducting with antiferromagnetism 
SF: staggered-flux without antiferromagnetism 
SF+AF: staggered-flux with antiferromagnetism 
ZF: zero-flux 



VI. Projected trial wavefunctions and other numerical 
results 

• d-wave BCS trial wavefunction 
A. The half-filled case 

d-wave• Staggered flux state 

• SU(2) symmetry 
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VII. The single hole problem 
• Vacancy in an “antiferromagnetic sea” 

 

• Dynamics of a single hole 

• Using self-consistent Born approximation, and ignoring crossing magnon 
propagators, self-consistent equation for the hole propagator is 

• ARPES sees two peaks in A(k, ω) in addition to hole quasiparticle peaks 
centered at 

• These can be understood as the “string” excitation of the hole moving in 
the linear confining potential due to the AF background 



VII. The single hole problem 
• Vacancy in an “antiferromagnetic sea” 

 

• ARPES sees two peaks in A(k, ω) in addition to hole quasiparticle peaks 
centered at 

• These can be understood as the “string” excitation of the hole moving in 
the linear confining potential due to the AF background 

• The hole must retrace its path to “kill” 
the string  holes are localized 
 

• Do holes really conduct? 
 

• Yes! A hole does not necessarily need 
to retrace its path without raising 
energy 
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VIII. Slave boson formulation of t-J  model and mean 
field theory 
• Splitting the electron 

 

• Low energy physics in terms of the t-J model 

• No-double-occupancy condition 

• Most general “electron splitting” using slave boson operators 

• Enforcing no-double-occupancy condition in terms of slave particles 

• Heisenberg exchange term in terms of slave particles 



VIII. Slave boson formulation of t-J  model and mean 
field theory 
• Splitting the electron 

 

• Heisenberg exchange term in terms of slave particles 

• Decoupling exchange term in particle-hole and particle-particle channels 

evaluated using constraint and ignoring 

• Hubbard-Stratonovich transformation 



VIII. Slave boson formulation of t-J  model and mean 
field theory 
• “Local” U(1) gauge symmetry 

 

• Effective Lagrangian 

• Local U(1) transformation 

• We have various choices satisfying mean field conditions 

• Phase fluctuations of χij and λi have dynamics of U(1) gauge field 



VIII. Slave boson formulation of t-J  model and mean 
field theory 
• Mean field ansatz 

 

• Effective Lagrangian 

• The uniform RVB (uRVB) state  purely fermionic theory 

• Lower energy states than uRVB state 
• d-wave state 
• Staggered flux state 

• d-wave and staggered flux state have identical dispersion due to local 
SU(2) symmetry 



VIII. Slave boson formulation of t-J  model and mean 
field theory 
• Mean field ansatz 

 

• Effective Lagrangian 

• Use of SU(2) doublets 

• Compact Effective Lagrangian 



VIII. Slave boson formulation of t-J  model and mean 
field theory 
• Mean field ansatz 

 

• Compact Effective Lagrangian 

• Lagrangian invariant under 
• Connecting mean field ansatz 

• Ground state of  antiferromagnetic long range ordering (AFLRO) 
 

• Hence we can naively decouple the exchange interaction 



VIII. Slave boson formulation of t-J  model and mean 
field theory 
• The doped case 

 

• Undoped (x = 0) only has spin dynamics 
 

• Bosons are crucial for charge dynamics 
 

• No Bose-Einstein condensation (BEC) in 2D! 
 

• Weak interlayer hole-hopping  TBE  ≠ 0 
 

• Slave boson model  5 phases classified by χ, 
Δ, and b = 〈bi〉 

Label State χ Δ b 
I Fermi liquid ≠ 0 = 0 ≠ 0 
II Spin gap ≠ 0 ≠ 0 = 0 
III d-wave 

superconducting 
≠ 0 ≠ 0 ≠ 0 

IV uRVB ≠ 0 = 0 = 0 
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IX. U(1) gauge theory of the RVB state 
• Motivation 

 

• Mean field theory enforces no-double-occupany on average 
 

• Treat fluctuations about mean field on a Gaussian level 
 

• Redundancy of U(1) phase in defining fermion and boson 

• U(1) gauge theory 
 

• Ioffe-Larkin composition rule 
 

• Describes high temperature limit of 
the optimally doped cuprate 
 

• Limitations 
 

• Fails in the underdoped region 
 

• Gaussian theory also misses the 
confinement physics 



IX. U(1) gauge theory of the RVB state 

• Slave-boson formalism 
 

• “Fractionalizing” the electron 

A. Effective gauge action and non-Fermi-liquid behavior 

• Local gauge degree of freedom 

• Fermion/boson strongly coupled to the gauge field  conservation of the 
gauge charge 

• Green’s functions transform as 

• Definition of gauge fields 



IX. U(1) gauge theory of the RVB state 

• Gaussian approximation 
 

• Relevant Lagrangian 

A. Effective gauge action and non-Fermi-liquid behavior 

• aij  → aij + 2π  Lattice gauge theory coupled fermions/bosons 
 

• Gauge field has no dynamics  coupling constant of the gauge field is 
infinity 
 

• Integrate out the matter fields: 
 

• Gaussian approximation or RPA (continuum limit) 



IX. U(1) gauge theory of the RVB state 

• Effective gauge field action 
 

• Gaussian Lagrangian 

A. Effective gauge action and non-Fermi-liquid behavior 

• Coupling between the matter fields and gauge field 

• Constraints after integrating over temporal and spatial components of aμ 

• Physical meaning of the gauge field? 
Consider electron moving in a loop 



IX. U(1) gauge theory of the RVB state 

• Physical quantities in terms of fermions/bosons 
 

• The fermion/boson current 

B. Ioffe-Larkin composition rule 

• External E field  gauge field a induces “internal” electric field e 

• Recall constraint 

• “Scattering” from the gauge field 

• Temperature-dependent superfluid density 



IX. U(1) gauge theory of the RVB state 

• Physical effects of gauge field 
 

• Physical conductivity 

B. Ioffe-Larkin composition rule 

• External E field  gauge field a induces “internal” electric field e 



IX. U(1) gauge theory of the RVB state 

• The Berezinskii-Kosterlitz-Thouless (BKT) Transition 
 

• Free energy of a single CuO2 layer 

C. Ginzburg-Landau theory and vortex structure 



IX. U(1) gauge theory of the RVB state 

• Vortex structure 
 

• Type A: Vortex core state is the Fermi liquid (I) 
 

• Type B: Vortex core state is the spin gap state (II) 

C. Ginzburg-Landau theory and vortex structure 

• Energy contribution from region far away from 
the core (> ξB, ξF) for type A 

• Condensation energy for types A and B: 

• Total vortex energies 
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IX. U(1) gauge theory of the RVB state 

• Pure lattice gauge theory 
 

• Compact lattice gauge theory without matter field 

D. Confinement-deconfinement problem 

• Wilson loop as order parameter 

• In terms of gauge potential 

• Area (confined) vs. perimeter (deconfined) law 

• The “instanton” is the source of the gauge flux with the field distribution 

• Flux slightly above (future) or below (past) of the instanton differs by 2π 



IX. U(1) gauge theory of the RVB state 

• Coupling of gauge theory to paired matter fields 
 

• Is deconfined ground state possible in U(1) gauge theory? 
 

• Consider following bosonic field coupled to compact U(1) field (coupling 
constant g) 

D. Confinement-deconfinement problem 

• For g ≪ 1, SB reduces to an XY model weakly 
coupled to a U(1) gauge field (q = 1) 
 

• In (2+1)D t-g plane is covered by Higgs-
confinement phase (q = 1) 
 

• If bosonic field is pairing field  q = 2 
 

• Pairing implicitly has Z2 gauge symmetry 
 

• Quantum Z2 (Ising) gauge theory in 2D has a 
confinement-deconfinement transition 



IX. U(1) gauge theory of the RVB state 

• Coupling of gauge theory to gapless matter fields 
 

• Is deconfined ground state possible in without pairing? 
 

• Yes, dissipation due to gapless excitations lead to deconfinement 
 

• This (gapless) U(1) spin liquid arises naturally from SU(2) formulation 
 

• Controversies on U(1) gauge theory confinement 
 

• Nayak  slave particles are always confined in U(1) gauge theories due to 
infinite coupling 
 

• Partially integrating out the matter fields makes coupling finite (but strong) 
 

• Several counter examples found to Nayak’s claim 

D. Confinement-deconfinement problem 



IX. U(1) gauge theory of the RVB state 

• Discrepancies in temperature-dependent superfluid density 
 

• In the Gaussian approximation, current carried by quasiparticles in the 
superconducting state is xvF 
 

• Confinement leads to BCS-like quasiparticles carrying the full current 
 

• Cannot explain spin correlations at (π, π) 
 

• Gauge field is gapped in the fermion paired state 
 

• Gauge fluctuations cannot account for enhanced spin correlations seen in 
neutron scattering at (π, π) 
 

• Energetically stable “hc/e” vortex not observed 
 

• STM failed to see the hc/e vortex 
 

• U(1) theory misses the low lying fluctuations related to SU(2) particle-hole 
symmetry at half-filling 

E. Limitations of the U(1) gauge theory 



Summary of the cuprates (part 1) 
• Electronic structure 

 

• Relevant physics confined to 2D 
 

• The “t-J” model 
 

 
 
 

• Universal phase diagram 
 

• Phenomenology of the cuprates 
 

• Experimental signatures of the 
pseudogap phase 
 

• Nodal quasiparticles 
 

• Slave bosons 
 

• Slave fermions and bosons 
 

• U(1) gauge theory 



Next time: cuprates (cont’d) and pnictides 
• SU(2) slave boson theory at finite doping 

 

• SU(2) theory gives richer phase diagram than U(1) theory 
 

• SU(2) theory captures confinement physics missed by U(1) theory 

• Iron-based (pnictide) superconductors 
 

• Discovered in 2008 by Kamihara 
 

• Physics confined to 2D like cuprates 
 

• Pseudogap replaced by “nematic phase” 
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