Fractional Quantum Hall Effect

Scott Geraedts

Recap: Chern-Simons Theory

The Lagrangian for the Chern-Simons theory can be written as
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where a* is the “internal” gauge field and j, is the current due to the quasiparticles. Nick showed that this

theory has

e Topological order (ground state degeneracy, fractionalization)

e Quantized “Hall conductivity”

Outline

e Connecting this theory to the “external” gauge field = the EM field (i.e. connect to the physical QHE)
e Hierarchical construction and K-matrix theory

e Edge states

1 Connection to the physical quantum Hall effect (QHE)

e We want an effective theory which will work at low energies ( complete theory too complicated)
e We guess the theory and then see if it is right by comparing it to other calculations

e The effective Lagrangian, with the Maxwell terms, as well as a guess Lyop[J] (which will later turn out
to be the Chern-Simons term) can be written as
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e Due to conservation of charge we know that J,J#* = 0; hence we can write it in terms of an “internal”
gauge field a) as
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Now, assuming (or guessing) the Liop[J] to be the Chern-Simons term, the full Lagrangian reads
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Minimizing the Lagrangian with respect to a, we get
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Using the definition B* = ¢#**9, A, as well as and adding in the appropriate dimensional constants we
recover the Hall conductivity
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Consider the properties of the ada term: “Hopf term”

21\ 2 y 1 , 21\ 2 s
2 ? 7TmJ1 W J2 = 2 ? ™m d’x J1 f,u, (7)

where we have defined
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If we let
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such that path of J; encircles Js. Then becomes
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This is just saying that J particles have fermionic statistics (which makes sense since they are fermions).
Also, in the second line we have used the fact that
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In summary, the action in terms of free electrons:

e has reproduced the fractional quantum Hall effect

e has not reproduced the fractional charge, fractional statistics, and the more complicated fractions



2 Quasiparticles

In order to recover the fractional charge and fractional statistics we can add the term [j*a,, where j* is the
quasiparticle current which carries the charge of a field. Now the Lagrangian becomes
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Integrating out all the a, degrees of freedom, while interchanging 9, < k,, we end up with an effective
Lagrangian given by
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From each of the terms on the RHS we get:
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Chern-Simons term in the external fields

e The Maxwell terms are irrelevant = coupling has mass dimension —1; and we know that terms with
mass dimension —1 are irrelevant and low energies

ada is the most relevant term allowed by symmetry and gauge invariance

3 More complicated fractions (Hierarchical construction)

Let us define a new G, such that
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Then we can write down the overall Lagrangian is
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e j/ is a boson, so my is even
e We can minimize the above Lagrangian with respect to a, and @, to get the Hall conductivity

e We can integrate out a, and a, to get the fractional charge and fractional statistics

However, we do not need to do these manipulations every time; this has been elegantly worked out in the
K-matrix theory. We can write down more compactly as
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where
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Excitations can carry the charge of a, and a,: j'lra;. The standard FQHE quantities can be determined as
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We can thus reproduce all experimentally observable fractions

We can also deal with multilayer states this way

Edge States

The Chern-Simons term is not gauge invariant; we’ll claim that they are physical
Pick them to give the right results

Try ap =0, a; = 0;¢
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Note that the dy¢ term won’t matter across the boundary. However, if H = 0, velocity is zero; this
can’t be right
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Thus our Hamiltonian is
H = v(09¢) (22)
after canonically quantizing the Hamiltonian we get
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where the operators py satisfy the “Kac-Moody algebra”
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only works when vm < 0
More generally, we can write the edge action as
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