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Recap: Chern-Simons Theory

The Lagrangian for the Chern-Simons theory can be written as

LCS = m

4π ε
µνλaµ∂νaλ + jµaµ (1)

where aµ is the “internal” gauge field and jµ is the current due to the quasiparticles. Nick showed that this
theory has

• Topological order (ground state degeneracy, fractionalization)

• Quantized “Hall conductivity”

Outline

• Connecting this theory to the “external” gauge field ≡ the EM field (i.e. connect to the physical QHE)

• Hierarchical construction and K-matrix theory

• Edge states

1 Connection to the physical quantum Hall effect (QHE)

• We want an effective theory which will work at low energies ( complete theory too complicated)

• We guess the theory and then see if it is right by comparing it to other calculations

• The effective Lagrangian, with the Maxwell terms, as well as a guess Ltop[J ] (which will later turn out
to be the Chern-Simons term) can be written as

L = FµνF
µν + e

2πJ
µAµ + Ltop[J ] (2)

• Due to conservation of charge we know that ∂µJµ = 0; hence we can write it in terms of an “internal”
gauge field aλ as

Jµ = e

2π ε
µνλ∂νaλ (3)
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Now, assuming (or guessing) the Ltop[J ] to be the Chern-Simons term, the full Lagrangian reads

L = FµνF
µν +

( e

2π

)2
εµνλAµ∂νaλ + m

4π ε
µνλaµ∂νaλ (4)

Minimizing the Lagrangian with respect to aµ we get

∂L
∂aµ

=
( e

2π

)2
εµνλ∂νAλ + m

4π ε
µνλ∂νaλ (5)

= 0

Using the definition Bµ = εµνλ∂νAλ as well as (3) and adding in the appropriate dimensional constants we
recover the Hall conductivity

J =
(

1
m

)
e2

h
B (6)

Consider the properties of the a∂a term: “Hopf term”

2
(

2π
e

)2
πmJµ1

(
1

∂λεµνλ

)
Jν2 = 2

(
2π
e

)2
πm

ˆ
d3x Jµ1 fµ (7)

where we have defined

fµ ≡
(

1
∂λεµνλ

)
Jν2 (8)

If we let

J1 = δ(x1 − x)
J2 = δ(0)

such that path of J1 encircles J2. Then (7) becomes

2
(

2π
e

)2
πm

ˆ
d3x Jµ1 fµ = 2

(
2π
e

)2
πm

˛
C

fµ

= 2
(

2π
e

)2
πm

ˆ
S

∂f

= 2
(

2π
e

)2
πm

ˆ
S

δ(0)

= 2
(

2π
e

)2
πm (9)

This is just saying that J particles have fermionic statistics (which makes sense since they are fermions).
Also, in the second line we have used the fact that

∂µfµ = J2 (10)

In summary, the action in terms of free electrons:

• has reproduced the fractional quantum Hall effect

• has not reproduced the fractional charge, fractional statistics, and the more complicated fractions
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2 Quasiparticles

In order to recover the fractional charge and fractional statistics we can add the term ljµaµ, where jµ is the
quasiparticle current which carries the charge of a field. Now the Lagrangian becomes

L = FµνF
µν +

( e

2π

)2
εµνλAµ∂νaλ + m

4π ε
µνλaµ∂νaλ + ljµaµ (11)

Integrating out all the aµ degrees of freedom, while interchanging ∂ν ↔ kµ, we end up with an effective
Lagrangian given by

L = πl2

m
jµ
(

1
∂λεµνλ

)
jν + el

m
jµAµ + e2

m
εµνλAµ∂νAλ + Maxwell term (12)

From each of the terms on the RHS we get:

• Θ = 2πl2

m

• q = el

m

• Chern-Simons term in the external fields

• The Maxwell terms are irrelevant ⇒ coupling has mass dimension −1; and we know that terms with
mass dimension −1 are irrelevant and low energies

• a∂a is the most relevant term allowed by symmetry and gauge invariance

3 More complicated fractions (Hierarchical construction)

Let us define a new ãµ such that

jµ = εµνλ∂ν ãλ (13)

Then we can write down the overall Lagrangian is

L = e

2π ε
µνλAµ∂νaλ −

m1

4π ε
µνλaµ∂νaλ + 1

2π ε
µνλaµ∂ν ãλ −

m2

4π ε
µνλãµ∂ν ãλ (14)

• jµ is a boson, so m2 is even

• We can minimize the above Lagrangian with respect to aµ and ãµ to get the Hall conductivity

• We can integrate out aµ and ãµ to get the fractional charge and fractional statistics

However, we do not need to do these manipulations every time; this has been elegantly worked out in the
K-matrix theory. We can write down (14) more compactly as

L = − 1
4π εµνλKIJa

µ
I ∂

νaλJ + e

2π qIAµ∂a
µ
I (15)
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where

KIJ =
[
m1 −1
−1 m2

]
qI =

[
1
0

]
(16)

Excitations can carry the charge of aµ and ãµ: j′lIaI . The standard FQHE quantities can be determined as

σ = qTK−1q (17)
Q = eqTK−1 (18)
Θ = πlTK−1l (19)

• We can thus reproduce all experimentally observable fractions

• We can also deal with multilayer states this way

4 Edge States

• The Chern-Simons term is not gauge invariant; we’ll claim that they are physical

• Pick them to give the right results

• Try a0 = 0, ai = ∂iφ

S = −m4π

ˆ
dx ∂t (∂xφ) (∂yφ)

= −m4π

ˆ
dx ∂tφ∂xφ (20)

Note that the ∂yφ term won’t matter across the boundary. However, if H = 0, velocity is zero; this
can’t be right

• Try a0 = −vax

S = −m4π

ˆ
dx ∂tφ∂xφ+ v (∂xφ)2 (21)

Thus our Hamiltonian is

H = v (∂xφ)2 (22)

after canonically quantizing the Hamiltonian we get

H = 2πmv
∑
k

ρ†kρk (23)

where the operators ρk satisfy the “Kac-Moody algebra”

[ρk, ρk′ ] = kδk+k′

2πm (24)

only works when vm < 0

• More generally, we can write the edge action as

S = 1
4π

ˆ
dx [KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ ] (25)
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