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I. Introduction 
• Two central threads of quantum materials research 

• Correlated electron physics (e.g. mainly 3d transition metal oxides) 
o Local moment formation and magnetism 
o Quantum criticality 
o Unconventional superconductivity 

• Non-trivial physics from strong Spin-Orbit Coupling (SOC) 
o f-electron materials 
o Topological insulators and superconductors (s- and p- orbitals) 

• What about systems with correlation + SOC? 
• Heavy Transition Metal Oxides (TMOs) mainly from 5d series 
• Both SOC and electronic repulsion strengths, λ and U respectively, become 

comparable 
• Several arguments suggest that λ and U tend to cooperate rather than 

compete 
• A mean-field model: Hubbard model with SOC 

No correlations and no SOC with SOC with correlations 



I. Introduction 

No correlations and no SOC with SOC with correlations 
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• Angular momentum (Li) and spin (Si) of electrons on site i couple 
• Energy cost of repulsion between electrons on the same site = U 

o One electron localized per site 

I. Introduction 
• A mean-field model: Hubbard model with SOC 

No correlations and no SOC with SOC with correlations 

• Consider example: Sr2IrO4 

Kinetic energy with 
which electron hops 
from site j to i 

o The operator                    counts the number of electrons on site i in orbital α 
o Last terms kicks in when 



I. Introduction 
• Proposals for Iridates 

Phase Correlation Properties Proposed 
Materials 

Axion Insulator W-I Magnetic insulator, TME, no 
protected surface states R2Ir2O7 

Weyl semi-metal I Dirac-like bulk states, surface Fermi 
arcs, anomalous Hall R2Ir2O7 

Chern Insulator W-I Bulk gap, QHE SrIrO3 

Fractional Chern 
Insulator I-S Bulk gap, FQHE SrIrO3 

Fractional Topological 
Insulator, Topological 
Mott Insulator 

I-S Several possible phases. Charge gap, 
fractional excitations R2Ir2O7 

Quantum spin liquid S Several possible phases. Charge gap, 
fractional excitations  Na2IrO3 

Emergent quantum phases in correlated spin-orbit coupled materials. Abbreviations are as follows: 
TME = topological magnetoelectric effect, (F)QHE = (fractional) quantum Hall effect. Correlations are 
W-I = weak-intermediate, I = intermediate (requiring magnetic order, say, but mean field-like), and S = 
strong. 



II. Weak to Intermediate Correlations 

• Topological insulators: non-trivial topology of the bands in a gapped system 
• Gapless systems: Weyl semi-metals (WSMs) 

• Notion of band topology  some degree of itinerancy 
• Non-TI, but still topological phases, require: intrinsic symmetry breaking 
• Any form of intrinsic magnetization  correlations “weak” enough for mean-

field 
• Examples of non-TI topological phases: 

• Antiferromagnetic Topological Insulator (AFTI) 
• Axion Insulator 
• Weyl semi-metal 

• Strong Mott regime  electrons atomically localized; “band” topology doesn’t 
make sense 

• Exotic phases due to orbital- and spin-ordering when both are entangled 
• The spin + orbit entanglement lifts degeneracies of the ground states to give 

interesting lattice models 



II. Weak to Intermediate Correlations 
Pyrochlore iridates A. 

• Formula: R2Ir2O7 where R is a rare earth element 



II. Weak to Intermediate Correlations 
Pyrochlore iridates A. 

Experimental resume 1. 

• Resistivity goes from being “metallic” (dρ/dT > 0) at T > Tc to “non-metallic” 
(dρ/dT < 0) at T < Tc 

• The rare earth ion affects crystal field splitting; Tc is changed 
• Larger R3+ cation  more metallicity; larger cation  decreased trigonal 

compression  increased the Ir-O orbital-overlap 



II. Weak to Intermediate Correlations 
Pyrochlore iridates A. 

Electronic structure 2. 

• Focus on Ir-electron physics; neglect the rare earth magnetism (relevant at very 
low temperatures) 

• Outer-shell electrons of Ir4+ cation are in a 5d5 configuration 

• SOC splits the t2g spinful manifold into a higher energy Jeff = 1/2 doublet and a 
lower Jeff = 3/2 quadruplet 

• Only (half-filled)  Jeff = 1/2 doublet near the Fermi energy; 2 bands per Ir atom 
• 4 Ir atoms in the tetrahedral unit cell  total 8 Bloch bands near Fermi energy 

• Full angular momentum operator projected to the t2g manifold: 



II. Weak to Intermediate Correlations 
Pyrochlore iridates A. 

Electronic structure 2. 

• Consider band structure of the 8 Bloch bands 
near the Γ point 

• Classification of 8 Bloch bands: two 2-D 
irreps and one 4-D irrep (cubic symmetry) 

• Pesin and Balents obtained “4-2-2” 
• The “2-2-4” and “4-2-2” can be TIs due to 

insulating ground state 
• Yang et al. found “2-4-2” 

metallic state due to trigonal 
distortion 

• Wan et al. also found “2-4-2” 
metallic state from LDA 
calculations 

• TI state in (metallic) Y2Ir2O7 
is impossible 

Increase distortion  

2+2 

2 

2 



II. Weak to Intermediate Correlations 
Pyrochlore iridates A. 

Electronic structure 2. 
• Convenient tight-binding model for both metallic and 

insulating regimes 

• Diagonalization gives “2-4-2” semi-metallic state for –2 ≤ t2/t1 ≤ 0 and a 
Topological Insulator otherwise 

• Semi-metallic state is a zero-gap semiconductor 
• This semi-metallic state forms stable non-Fermi liquid phase with a quadratic 

band touching at the Γ point: “Luttinger-Abrikosov-Beneslavskii” (LAB) phase 
• About LAB: 

• Electron-hole pair excitations susceptible to “excitonic instability” due to 
unscreened Coulomb interactions 

• Excitonic instability circumvented in the presence of time-reversal and 
cubic symmetries 

• Enormous zero field anomalous Hall effect 

Gives non-trivial Berry phase 



II. Weak to Intermediate Correlations 
Pyrochlore iridates A. 

Electronic structure 2. 
• Convenient tight-binding model for both metallic and 

insulating regimes 



II. Weak to Intermediate Correlations 
Pyrochlore iridates A. 

Magnetism and Weyl Fermions 3. 
• Local C3 axes for four Ir ions constituting a tetrahedron 
• Experiments suggest “all-in/all-out” (AIAO) ground 

state 
• Wan et al. found Weyl semi-metal with 24 Weyl nodes 

and suggested an axion insulator state 

The role of many-body effects 4. 
• TI, AIAO, WSM stable to (perturbative) interactions 
• Axion insulator state appears in the CDMFT analysis but not at the Hartree-Fock 

level 
• Wang et al. formulated Z2 invariant in terms of zero-frequency Green’s function 
• Both CDMFT and Hartree-Fock theory cannot capture topological Mott insulator 
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II. Weak to Intermediate Correlations 
Pyrochlore iridates A. 

Interactions with rare earth moments 5. 
• What about interactions between R-site f-electrons and the Ir d-electrons? 
• Non-Kramers R3+ ions (R = Pr, Tb, Ho) have an even and Kramers ions (R = Nd, 

Sm, Gd, Dy, Yb) have an odd number of f-electrons 
• Example: Yb2Ir2O7; two ordering temperatures: TM = 130 K (Ir sublattice) and T* 

≈ 20 K (Yb sublattice) 
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• Most studied f-electron physics in iridates: 
Pr2IrO7 (no MIT) 

• Zero field anomalous Hall effect at 0.3 K < T < 
1.5 K 

• Pr moments exhibit spin-ice type physics; “2-
in/2-out” configurations on each tetrahedron 

• Pr ordering via RKKY interaction 
• Chen et al. suggest coupling to Ir may help to 

stabilize the WSM and axion insulator phases 



II. Weak to Intermediate Correlations 
Pyrochlore iridates A. 

Issues and Outlook 6. 
• Pyrochlore iridates undergo MIT with the onset of AIAO magnetic order 
• Nd2Ir2O7: AIAO at the Nd-sites may imply AIAO at the Ir-sites 
• Resonant x-ray diffraction measurements suggest Eu2Ir2O7 has AIAO order 

 

• Generation of the spin-orbit 
exciton 



III. Strong Mott Regime 
• Electrons effectively localized to single atoms 
• Description in terms of local spin and orbital degrees of freedom (DOF) applies 
• Charge gap ≫ energy of spin and orbital excitations 
• Notion of band topology does not make sense 
• Orbital degeneracy resolved in a unique way 

3-fold degenerate 
for 1, 2, 4, and 5 
electrons 

2-fold degenerate 
for 1 and 3 
electrons 

• Orbital DOF behaves as additional 
“pseudo-spin” quantum variable 

• Exchange of spin + pseudo-spin  
Kugel-Khomskii models 

• Jahn-Teller effect  lattice distortions 
split orbital degeneracy 

• “Quantumness” washed away by 
phonon modes 

• SOC trades Jahn-Teller effect for 
entanglement of spin and orbital DOF 

• Exchange of spin + pseudo-spin  possibilities of exotic new ground states 
• Quantum spin liquid and multipolar ordered phases possible in honeycomb 

iridates and the double perovskites 



III. Strong Mott Regime 
Full degeneracy lifting and honeycomb iridates A. 

• Ir4+ with 5d5  orbital degeneracy removed completely 
• Na2IrO3 and Li2IrO3  Ir4+ + strong Mott regime 
• Anisotropic exchange model 

• The only example of an exactly soluble model for a 
quantum spin liquid state! 

• No magnetic order + charge-neutral “spin”-carrying elementary excitations  
Majorana fermions! 

• Unfortunately experiments on Na2IrO3 have not confirmed the Kitaev model yet 



III. Strong Mott Regime 
Partial degeneracy lifting and ordered double perovskites B. 

• Need only 1 or 2 electrons in the 4d or 5d shells  strongly spin-orbit coupled 
analogs of Ti3+ and V3+ or V4+ 

• V3+ or V4+ constitute classic families undergoing Mott transitions 
• With SOC, degeneracy lifting same as before 
• d1 case  local Jeff = 3/2 spin 

• d2 case  two parallel (spin-1/2) 
electrons with aligned spins due to 
Hund’s rule  total spin S = 1 

• Since t2g has Leff = 1, Jeff = Leff + S = 2 
• Overall degeneracy for d1 (d2) case is 4 (5) 

• Multipolar spin exchange common for large Jeff 
• Multipolar interactions connect directly states with very different Sz quantum 

numbers  wavefunction delocalization in spin space 



Double perovskites 1. 
• A2BB′O6  regular ABO3 perovskites with alternating 

B (non-magnetic) and B′ (magnetic) atoms 
• Consequence of SOC  for Jeff = 3/2 the g-factor 

vanishes 
• Magnetic entropy (Rln(4)) estimated from experiments 
 indication of strong SOC 

III. Strong Mott Regime 
Partial degeneracy lifting and ordered double perovskites B. 



Multipolar exchange 2. 
• Consider Kugel-Khomskii type exchange with all 

orbitals are included  then project to the effective 
spins in the strong SOC limit 

• For d1 case consider exchange: 

III. Strong Mott Regime 
Partial degeneracy lifting and ordered double perovskites B. 

• Consider Kugel-Khomskii type exchange with all 
orbitals are included  then project to the effective 
spins in the strong SOC limit 

• In strong for t2g we have 

• Performing the projections we get 

• For d1 we have two exchange channels: ferromagnetic exchange between 
orthogonal orbitals (J′) and electrostatic quadrupole interaction (V) 



Mean field theory 3. 
• Exotic phases even in mean 

field 
• Anisotropic contributions 

come from quadrupolar and 
octupolar interactions 

• Antiferromagnetic phase for 
small J′/J and V/J 

• Ferromagnetic phases (FM110 
and FM100) for large J′/J and 
V/J 

• Quadrupolar states classified 
by eigenstates of 

III. Strong Mott Regime 
Partial degeneracy lifting and ordered double perovskites B. 

• Only 1 independent eigenvalue (q, q, -2q)  Uniaxial nematic phase 
• 2 independent eigenvalues (q1, q2, –q1, –q2)  Biaxial nematic phase 
• Quadrupolar phase appears in d2 perovskite even for T = 0; d1 must always 

break time reversal symmetry at T = 0 to avoid ground state degeneracy. 



Beyond mean-field theory 4. 
• Multipolar interactions destabilize conventional, magnetically ordered 

semiclassical ground states 
• More “spin flip” terms analogous to the Si

+Sj
– couplings 

• Quantum disordered ground states can be established rigorously for AKLT 
models 

• Multipolar Hamiltonians are intermediate between conventional spin models and 
these special cases 

• Check for disordered states  gauge the magnitude of quantum fluctuations 
within a spin-wave expansion 

• Valence bond solids and quantum spin liquid states predicted in various 
parameter regimes 

• Non-cubic crystal fields give highly frustrated systems  quantum fluctuations 
support a spin liquid phase 

III. Strong Mott Regime 
Partial degeneracy lifting and ordered double perovskites B. 



Connections to experiments 5. 

• Ba2YMoO6 cubic to low 
temperatures 

• Like many double perovskites 
has a two Curie regime 

• Phonon mode above 130 K; 
consistent with local structural 
change 

 
• Ba2NaOsO6 has a 

ferromagnetic ground state 
below 6.8 K with [110] easy 
axis 

• Landau theory predicts [100] 
or [111] as the easy axis 

III. Strong Mott Regime 
Partial degeneracy lifting and ordered double perovskites B. 

• Quadrupolar ordering mechanism can account for it; associates with a structural 
change; not observed so far 



• Not discussed  Ruddlesdon-Popper series of perovskite iridates  formula for 
a n-layer quasi-2D system  Srn+1IrnO3n+1 for n = 1, 2, ∞ 

• The n = 1 case (Sr2IrO4) expected to be a high-Tc superconductor, upon doping, 
owing to its similarity cuprate parent compound to La2CuO4 

• This review mainly discusses bandwidth controlled MITs; filling (or doping) 
controlled MITs might reveal interesting physics 

• Exotic fractionalized phases possible: fractional Chern insulators from 
heterostructures of SrIrO3-SrTiO3 

• Controversies  Mott vs. Slater insulator in Sr2IrO4?  contradictory results 
from different calculations  experimental evidence needed 
 

IV. Concluding Remarks and Outlook 

• Heterostructures of 
SrIrO3 and R2Ir2O7 
along the [111] 
direction can give 
topological 
insulators and IQHE 
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