Correlated quantum phenomena in the strong spin-orbit regime

Tejas Deshpande

(24 September 2013)

Outline

I. Introduction

II. Weak to intermediate correlations

- Pyrochlore iridates
 - Experimental resume
 - Electronic structure
 - Magnetism and Weyl fermions
 - The role of many-body effects
 - Interactions with rare earth moments
 - Issues and Outlook

III. Strong Mott Regime

- Full degeneracy lifting and honeycomb iridates
- Partial degeneracy lifting and ordered double perovskites
 - Double perovskites
 - Multipolar exchange
 - Mean field theory
 - Beyond mean-field theory
 - Connections to experiments

IV. Concluding Remarks and Outlook

- Two central threads of quantum materials research
 - Correlated electron physics (e.g. mainly 3*d* transition metal oxides)
 - Local moment formation and magnetism
 - Quantum criticality
 - Unconventional superconductivity
 - Non-trivial physics from strong Spin-Orbit Coupling (SOC)
 - o *f*-electron materials
 - Topological insulators and superconductors (*s* and *p* orbitals)
- What about systems with correlation + SOC?
 - Heavy Transition Metal Oxides (TMOs) mainly from 5*d* series
 - Both SOC and electronic repulsion strengths, λ and U respectively, become comparable
 - Several arguments suggest that λ and U tend to **cooperate** rather than compete
- A mean-field model: Hubbard model with SOC

• A mean-field model: Hubbard model with SOC

• A mean-field model: Hubbard model with SOC

- Angular momentum (\mathbf{L}_i) and spin (\mathbf{S}_i) of electrons on site *i* couple
- Energy cost of repulsion between electrons on the same site = U
 - One electron **localized** per site
 - The operator $n_{i\alpha} = c_{i\alpha}^{\dagger} c_{i\alpha}$ counts the number of electrons on site *i* in orbital α
 - o Last terms kicks in when $n_{i\alpha} \neq 0, 1$

• Proposals for Iridates

Emergent quantum phases in correlated spin-orbit coupled materials. Abbreviations are as follows: TME = topological magnetoelectric effect, (F)QHE = (fractional) quantum Hall effect. Correlations are W-I = weak-intermediate, I = intermediate (requiring magnetic order, say, but mean field-like), and S = strong.

Phase	Correlation	Properties	Proposed Materials
Axion Insulator	W-I	Magnetic insulator, TME, no protected surface states	$R_2Ir_2O_7$
Weyl semi-metal	Ι	Dirac-like bulk states, surface Fermi arcs, anomalous Hall	$R_2Ir_2O_7$
Chern Insulator	W-I	Bulk gap, QHE	SrIrO ₃
Fractional Chern Insulator	I-S	Bulk gap, FQHE	SrIrO ₃
Fractional Topological Insulator, Topological Mott Insulator	I-S	Several possible phases. Charge gap, fractional excitations	$R_2Ir_2O_7$
Quantum spin liquid	S	Several possible phases. Charge gap, fractional excitations	Na ₂ IrO ₃

- Topological insulators: non-trivial topology of the **bands** in a **gapped** system
- Gapless systems: Weyl semi-metals (WSMs)

 $\mathcal{H}(\mathbf{k}) = \pm v (\delta k_x \sigma_x + \delta k_y \sigma_y + \delta k_z \sigma_z), \quad \delta \mathbf{k} = \mathbf{k} - \mathbf{k}_W$

- Notion of band topology \rightarrow some degree of itinerancy
- Non-TI, but still topological phases, require: *intrinsic* symmetry breaking
- Any form of intrinsic magnetization → correlations "weak" enough for meanfield
- Examples of non-TI topological phases:
 - Antiferromagnetic Topological Insulator (AFTI)
 - Axion Insulator
 - Weyl semi-metal
- Strong Mott regime → electrons atomically localized; "band" topology doesn't make sense
- Exotic phases due to orbital- and spin-ordering when both are entangled
- The spin + orbit *entanglement* lifts degeneracies of the ground states to give interesting lattice models

II. Weak to Intermediate Correlations A. Pyrochlore iridates

• Formula: R_2 Ir₂O₇ where *R* is a rare earth element

A. Pyrochlore iridates

1. Experimental resume

- Resistivity goes from being "metallic" $(d\rho/dT > 0)$ at $T > T_c$ to "non-metallic" $(d\rho/dT < 0)$ at $T < T_c$
- The rare earth ion affects crystal field splitting; T_c is changed
- Larger R³⁺ cation → more metallicity; larger cation → decreased trigonal compression → increased the Ir-O orbital-overlap

A. Pyrochlore iridates

2. Electronic structure

- Focus on Ir-electron physics; neglect the rare earth magnetism (relevant at very low temperatures)
- Outer-shell electrons of Ir^{4+} cation are in a $5d^5$ configuration

- Full angular momentum operator projected to the t_{2g} manifold: $\mathcal{P}_{t_{2g}} \mathbf{L} \mathcal{P}_{t_{2g}} = -\mathbf{L}_{\ell=1}^{\text{eff}}$
- SOC splits the t_{2g} spinful manifold into a higher energy $J_{eff} = 1/2$ doublet and a lower $J_{eff} = 3/2$ quadruplet
- Only (half-filled) $J_{\text{eff}} = 1/2$ doublet near the Fermi energy; 2 bands per Ir atom
- 4 Ir atoms in the tetrahedral unit cell \rightarrow total 8 Bloch bands near Fermi energy

A. Pyrochlore iridates

2. Electronic structure

- Consider band structure of the 8 Bloch bands near the Γ point
- Classification of 8 Bloch bands: two 2-D irreps and one 4-D irrep (cubic symmetry)
- Pesin and Balents obtained "4-2-2"
- The "2-2-4" and "4-2-2" can be TIs due to insulating ground state
- Yang *et al.* found "2-4-2" metallic state due to trigonal distortion
- Wan *et al*. also found "2-4-2" metallic state from LDA calculations
- TI state in (metallic) Y₂Ir₂O₇ is impossible

A. Pyrochlore iridates

2. Electronic structure

Convenient tight-binding model for both metallic and insulating regimes
 du = 22u × but

$$H_0 = \sum_{\langle ij \rangle} c_i^{\dagger} \left(t_1 + i t_2 \mathbf{d}_{ij} \cdot \boldsymbol{\sigma} \right) c_j$$

Gives non-trivial Berry phase

 $\mathbf{b}_1 = (0, 0, 0), \ \mathbf{b}_2 = (0, 1, 1), \ \mathbf{b}_3 = (1, 0, 1), \ \mathbf{b}_4 = (1, 1, 0)$

- Diagonalization gives "2-4-2" semi-metallic state for $-2 \le t_2/t_1 \le 0$ and a Topological Insulator otherwise
- Semi-metallic state is a zero-gap semiconductor
- This semi-metallic state forms stable *non-Fermi liquid* phase with a quadratic band touching at the Γ point: "Luttinger-Abrikosov-Beneslavskii" (LAB) phase
- About LAB:
 - Electron-hole pair excitations susceptible to "excitonic instability" due to *unscreened* Coulomb interactions
 - Excitonic instability circumvented in the presence of time-reversal and cubic symmetries
 - Enormous zero field anomalous Hall effect

A. Pyrochlore iridates

2. Electronic structure

Convenient tight-binding model for both metallic and insulating regimes

$$H_0 = \sum_{\langle ij \rangle} c_i^{\dagger} \left(t_1 + i t_2 \mathbf{d}_{ij} \cdot \boldsymbol{\sigma} \right) c_j$$

$$\mathbf{d}_{ij} = 2\mathbf{a}_{ij} \times \mathbf{b}_{ij} \qquad \mathbf{z}$$
$$\mathbf{a}_{ij} = \frac{1}{2}(\mathbf{b}_i + \mathbf{b}_j) - \mathbf{x}_c$$
$$\mathbf{b}_{ij} = \mathbf{b}_j - \mathbf{b}_i \qquad \mathbf{1}$$

 $\mathbf{b}_1 = (0,0,0), \ \mathbf{b}_2 = (0,1,1), \ \mathbf{b}_3 = (1,0,1), \ \mathbf{b}_4 = (1,1,0)$

A. Pyrochlore iridates

3. Magnetism and Weyl Fermions

- Local C_3 axes for four Ir ions constituting a tetrahedron
- Experiments suggest "all-in/all-out" (AIAO) ground state
- Wan *et al.* found Weyl semi-metal with 24 Weyl nodes and *suggested* an axion insulator state

4. The role of many-body effects

- TI, AIAO, WSM stable to (perturbative) interactions
- Axion insulator state appears in the CDMFT analysis but **not** at the Hartree-Fock level
- Wang *et al.* formulated Z_2 invariant in terms of zero-frequency Green's function
- Both CDMFT and Hartree-Fock theory cannot capture topological Mott insulator

A. Pyrochlore iridates

5. Interactions with rare earth moments

- What about interactions between *R*-site *f*-electrons and the Ir *d*-electrons?
- Non-Kramers R³⁺ ions (R = Pr, Tb, Ho) have an even and Kramers ions (R = Nd, Sm, Gd, Dy, Yb) have an odd number of *f*-electrons
- Example: $Yb_2Ir_2O_7$; two ordering temperatures: $T_M = 130$ K (Ir sublattice) and $T^* \approx 20$ K (Yb sublattice)
- Most studied *f*-electron physics in iridates: Pr₂IrO₇ (no MIT)
- Zero field anomalous Hall effect at 0.3 K < T < 1.5 K
- Pr moments exhibit spin-ice type physics; "2in/2-out" configurations on each tetrahedron
- Pr ordering via RKKY interaction
- Chen *et al.* suggest coupling to Ir may help to stabilize the WSM and axion insulator phases

A. Pyrochlore iridates

6. Issues and Outlook

- Pyrochlore iridates undergo MIT with the onset of AIAO magnetic order
- $Nd_2Ir_2O_7$: AIAO at the Nd-sites may imply AIAO at the Ir-sites
- Resonant x-ray diffraction measurements suggest Eu₂Ir₂O₇ has AIAO order

- Electrons effectively localized to single atoms
- Description in terms of local spin and orbital degrees of freedom (DOF) applies
- Charge gap \gg energy of spin and orbital excitations
- Notion of *band* topology does **not** make sense
- Orbital degeneracy resolved in a **unique** way
- Orbital DOF behaves as additional "pseudo-spin" **quantum** variable
- Exchange of spin + pseudo-spin → Kugel-Khomskii models
- Jahn-Teller effect → lattice distortions split orbital degeneracy
- "Quantumness" washed away by phonon modes
- SOC trades Jahn-Teller effect for entanglement of spin and orbital DOF
- Exchange of spin + pseudo-spin \rightarrow possibilities of exotic new ground states
- *Quantum spin liquid* and *multipolar ordered* phases possible in honeycomb iridates and the double perovskites

A. Full degeneracy lifting and honeycomb iridates

- Ir⁴⁺ with $5d^5 \rightarrow$ orbital degeneracy removed completely
- Na₂IrO₃ and Li₂IrO₃ \rightarrow Ir⁴⁺ + strong Mott regime
- Anisotropic exchange model

$$H_K = -K \sum_{\alpha = x, y, z} \sum_{\langle ij \rangle \in \alpha} S_i^{\alpha} S_j^{\alpha}$$

• The only example of an exactly soluble model for a quantum spin liquid state!

- No magnetic order + charge-neutral "spin"-carrying elementary excitations → Majorana fermions!
- Unfortunately experiments on Na_2IrO_3 have **not** confirmed the Kitaev model yet

B. Partial degeneracy lifting and ordered double perovskites

Need only 1 or 2 electrons in the 4*d* or 5*d* shells → strongly spin-orbit coupled analogs of Ti³⁺ and V³⁺ or V⁴⁺

5d⁵

- V³⁺ or V⁴⁺ constitute classic families undergoing Mott transitions
- With SOC, degeneracy lifting same as before
- d^1 case \rightarrow local $J_{\text{eff}} = 3/2$ spin
- $d^2 \operatorname{case} \rightarrow \operatorname{two} \operatorname{parallel} (\operatorname{spin-1/2})$ electrons with aligned spins due to Hund's rule \rightarrow total spin S = 1
- Since t_{2g} has $L_{\text{eff}} = 1$, $J_{\text{eff}} = L_{\text{eff}} + S = 2$
- Overall degeneracy for $d^1(d^2)$ case is 4 (5)
- *Multipolar* spin exchange common for large J_{eff}
- Multipolar interactions connect directly states with very different S^z quantum numbers → wavefunction delocalization in spin space

- **B.** Partial degeneracy lifting and ordered double perovskites
 - 1. Double perovskites
- A₂BB'O₆ → regular ABO₃ perovskites with alternating B (non-magnetic) and B' (magnetic) atoms
- Consequence of SOC \rightarrow for $J_{eff} = 3/2$ the *g*-factor vanishes
- Magnetic entropy (*R*ln(4)) estimated from experiments
 → indication of strong SOC

Compound	B'	electron config.	Θ_{CW} (K)	$\mu_{\mathrm{eff}} \left(\mu_B \right)$
${\rm Ba_2YMoO_6}$	Mo^{5+}	$4d^1$	$-91 \sim -219$	$1.34 \sim 1.72$
$\rm Sr_2MgReO_6$	Re^{6+}	$5d^1$	-426	1.72
${\rm Ba_2NaOsO_6}$	Os^{7+}	$5d^1$	~ -10	~ 0.6
	0.6±	- 12	150	1.01
Ba_2CaOsO_6	Os^{o_1}	$5d^2$	-157	1.61
${\rm La_2LiReO_6}$	Re^{5+}	$5d^2$	-204	1.97

B. Partial degeneracy lifting and ordered double perovskites

2. Multipolar exchange

- Consider Kugel-Khomskii type exchange with all orbitals are included → then project to the effective spins in the strong SOC limit
- For d^1 case consider exchange: $\mathcal{H}_{ex} = \mathcal{H}_{ex}^{xy} + \mathcal{H}_{ex}^{yz} + \mathcal{H}_{ex}^{xz}$

$$\mathcal{H}_{\text{ex}}^{xy} = J \sum_{\langle ij \rangle \in xy \text{ plane}} \left(\mathbf{S}_{i,xy} \cdot \mathbf{S}_{j,xy} - \frac{1}{4} n_{i,xy} n_{j,xy} \right)$$

- Consider Kugel-Khomskii type exchange with all orbitals are included → then project to the effective spins in the strong SOC limit
- In strong for t_{2g} we have $\mathbf{S}_{i,xy} = S_i \left[1 (L_i^z)^2 \right]$ $n_{i,xy} = 1 (L_i^z)^2$
- Performing the projections we get

$$\tilde{S}_{i,xy}^{\alpha} = \frac{1+2\delta_{\alpha,z}}{4}S_i^{\alpha} - \frac{1}{3}S_i^z S_i^{\alpha}S_i^z \quad (\alpha = x, y, z), \qquad \tilde{n}_{i,xy} = \frac{3}{4} - \frac{1}{3}(S_i^z)^2$$

• For d^1 we have two exchange channels: ferromagnetic exchange between orthogonal orbitals (J') and electrostatic quadrupole interaction (V)

 $S_i = \mathbf{S}_{i,xy} + \mathbf{S}_{i,xz} + \mathbf{S}_{i,yz}$

B. Partial degeneracy lifting and ordered double perovskites

3. Mean field theory

- Exotic phases even in mean field
- Anisotropic contributions come from quadrupolar and octupolar interactions
- Antiferromagnetic phase for small *J'/J* and *V/J*
- Ferromagnetic phases (FM110 and FM100) for large *J'/J* and *V/J*
- Quadrupolar states classified by eigenstates of $Q_i^{\mu\nu} = \langle S_i^{\mu} S_i^{\nu} \rangle - \frac{1}{3}S(S+1)\delta^{\mu\nu}$

- Only 1 independent eigenvalue $(q, q, -2q) \rightarrow$ Uniaxial nematic phase
- 2 independent eigenvalues $(q_1, q_2, -q_1, -q_2) \rightarrow$ Biaxial nematic phase
- Quadrupolar phase appears in d^2 perovskite even for T = 0; d1 must always break time reversal symmetry at T = 0 to avoid ground state degeneracy.

B. Partial degeneracy lifting and ordered double perovskites

4. Beyond mean-field theory

- Multipolar interactions destabilize conventional, magnetically ordered semiclassical ground states
- More "spin flip" terms analogous to the $S_i^+S_j^-$ couplings
- Quantum disordered ground states can be established rigorously for AKLT models
- Multipolar Hamiltonians are intermediate between conventional spin models and these special cases
- Check for disordered states → gauge the magnitude of quantum fluctuations within a spin-wave expansion
- Valence bond solids and quantum spin liquid states predicted in various parameter regimes
- Non-cubic crystal fields give highly frustrated systems → quantum fluctuations support a spin liquid phase

- **B.** Partial degeneracy lifting and ordered double perovskites
 - 5. Connections to experiments
- Ba₂YMoO₆ cubic to low temperatures
- Like many double perovskites has a two Curie regime
- Phonon mode above 130 K; consistent with local structural change
- Ba₂NaOsO₆ has a ferromagnetic ground state below 6.8 K with [110] easy axis
- Landau theory predicts [100] or [111] as the easy axis

• Quadrupolar ordering mechanism can account for it; associates with a structural change; not observed so far

IV. Concluding Remarks and Outlook

- Not discussed → Ruddlesdon-Popper series of perovskite iridates → formula for a *n*-layer quasi-2D system → Sr_{n+1}Ir_nO_{3n+1} for n = 1, 2, ∞
- The n = 1 case (Sr₂IrO₄) expected to be a high-Tc superconductor, upon doping, owing to its similarity cuprate parent compound to La₂CuO₄
- This review mainly discusses bandwidth controlled MITs; filling (or doping) controlled MITs might reveal interesting physics
- Exotic fractionalized phases possible: fractional Chern insulators from heterostructures of SrIrO₃-SrTiO₃
- Controversies → Mott vs. Slater insulator in Sr₂IrO₄? → contradictory results from different calculations → experimental evidence needed
- Heterostructures of SrIrO₃ and R₂Ir₂O₇ along the [111] direction can give topological insulators and IQHE

References

• William Witczak-Krempa, Gang Chen, Yong Baek Kim, and Leon Balents. "Correlated quantum phenomena in the strong spin-orbit regime." arXiv preprint arXiv:1305.2193 (2013)