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• Greeks: Concept of the atom 
• 19th century: 

o Periodic table of elements 
o Statistical mechanics 
o Electrodynamics 

• 20th century: 
o Quantum mechanics + Relativity 
o Subatomic (elementary) particles 

 
• Condensed Matter Physics: emergence 

• Anderson: “More is different” 
• Spontaneous symmetry breaking in high 

energy physics: Yoichiro Nambu 
(inspiration: superconductivity) 

• Lev Landau: Classification of phases by 
symmetry breaking 

• Vitaly Ginzburg: Local order parameter 
• Success of Landau-Ginzburg: crystalline 

solids, magnets and superconductors 
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I. Introduction 

Current = 1 μA 
Magnetic Field = 18 T 
Temperature = 1.5 K 

• Quantization of σxy as a 
consequence of: 
• Gauge invariance 
• Mobility gap at the 

quantized plateaus 
 

• Topological Phases of Matter 
• von Klitzing’s discovery of the 

Integer Quantum Hall (QH) 
Effect (IQHE) in 1980 

• Topological invariant  Hall 
conductance quantized in units 
of e2/h 

• Laughlin’s argument of the 
“quantum pump” 

• Thouless, Kohmoto, 
Nightingale, and den Nijs 
(TKNN)  Analytically 
showed quantization of Hall 
conductance 

• Quantization of σxy was shown 
by brute force evaluation of 
Kubo formula 
 Note: the TKNN paper was before Michael Berry’s 
seminal paper on Berry phase 



I. Introduction 
• Topology in mathematics 

• Notion of topological 
invariance  
classification of different 
geometrical objects into 
equivalence classes 

 Example: classification of 
2D surfaces  number of 
holes (or genus) 

   • Topology in physics 
• In physics, consider Hamiltonians of many-particle systems with an energy 

gap or vacuum of a theory with gapped excitations 
• Examples of real systems: Hamiltonians of insulators and superconductors 

with a full energy gap 
• NOT: metals, doped semiconductors, or nodal superconductors 
• “Smooth deformation”  Tuning parameters in the Hamiltonian without 

closing the bulk gap 
• Topological invariant  extra label in addition to Landau-Ginzburg order 

parameter 
 



I. Introduction 
• Overview of important developments in topological materials 

• Quantum Hall states belong to a topological class which explicitly breaks 
time-reversal symmetry (TRS) 

• Recently, new topological class of materials theoretically predicted and 
experimentally observed: Symmetry Protected Topological (SPT) phases 
preserving TRS in 2D and 3D 
 
 Discovery Theoretical Experimental 

Quantum spin Hall insulator 
state in HgTe quantum wells 

Bernevig et al., Science 314, 
5806 (2006), pp. 1757-1761 

König et al., Science 318, 
5851 (2007), pp. 766-770. 

Topological insulators (TIs) 
in three dimensions: theory 
and prediction in BixSb1-x 

(Theory) Fu et al., PRL 98, 
10 (2007), pp. 106803 Hsieh et al., Nature 452, 

7190 (2008), pp. 970-974 (BixSb1-x) Fu et al., PRB 76, 
4 (2007), pp. 045302 

Second generation of 3D 
topological insulators: 
Bi2Se3, Bi2Te3, and Sb2Te3 

Zhang et al., Nature Physics 
5, 6 (2009), pp. 438-442 

(Bi2Se3) Xia et al., Nature 
Physics 5, 6 (2009), pp. 398-
402 
(Bi2Te3,) Chen et al., 
Science 325, 5937 (2009), 
pp. 178-181 



I. “Real” Introduction 
• The (twisted) Road to 

Topological Insulators 
• IQHE without external gauge 

field (Haldane, 1988) 
• Topological Field Theory (TFT) 

of  the QH effect based on 
Chern-Simons (CS) term (Zhang 
et. al, 1992) 

• Microscopic model for QH 
Effect (QHE) in 4D (Zhang et. 
al, 2001) 

• 2D and 3D TIs result from 
dimensional reduction of 4D 
QHE 
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of  the QH effect based on 
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et. al, 1992) 

• Microscopic model for QH 
Effect (QHE) in 4D (Zhang et. 
al, 2001) 

• 2D and 3D TIs result from 
dimensional reduction of 4D 
QHE 

• Intrinsic spin Hall effect 
(Murakami et. al, 2003) 

• Dissipationless Spin Hall 
Insulator (SHI) (Murakami et. 
al, 2003) 
 

Occupations of 
Light-Hole (LH) and 
Heavy-Hole (HH) 
bands 

Spin conductance 
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I. “Real” Introduction 
• The (twisted) Road to Topological 

Insulators 
• Motivation from SHI  Quantum 

Spin Hall Effect (QSHE) in graphene 
with intrinsic Spin-Orbit Coupling 
(SOC) (Kane et. al, 2005a) 

• QSHE in strained semiconductors 
(Bernevig et. al, 2006) 
 

• Important Note: Z2 
classification of TRI insulators 
 “protected” edge states in 
QSHE (Kane et. al, 2005b) 

• Edge states due to band inversion 
of HgTe relative to CdTe known 
back in 1986 by Volkov and 
Pankratov! 

• Volkov and Pankratov did not 
make the connection to topology 
or protection of edge states 

• TFT for topological insulators 
using dimensional reduction of 
4D QHE (Qi et. al, 2008) 
 



II. Two-Dimensional Topological Insulators 

• Inversion of the Γ6 and Γ8 bands in 
HgTe relative to CdTe 

• HgTe can be a 3D topological insulator 
• HgTe has no gap! 
• Quantum confinement provides 

subbands with gaps 
• For well thickness (dQW) > 6.3 nm 

phase transtion occurs 
• Bands get “inverted” 

 

Effective model of the two-dimensional time-reversal invariant 
topological insulator in HgTe/CdTe quantum wells 

A. 
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II. Two-Dimensional Topological Insulators 
 Divide the model Hamiltonian into two 

parts: 
 

Explicit solution of the helical edge states B. 

• The model is defined (say) for the region x > 0. By breaking 
translational symmetry in this direction we need to replace: 
 • The edge energy spectrum (if it exists) belongs to a family of eigen spectra of 
the full Hamiltonian with 
 

• Above Hamiltonian is block diagonal  solutions take the form 
 

 The above eigenstates are related by time-reversal 
 



II. Two-Dimensional Topological Insulators 
Explicit solution of the helical edge states B. 

• For C = D = 0 (i.e. assuming particle-hole symmetry) and E = 0 we get 
 

• With the ansatz: 
 



II. Two-Dimensional Topological Insulators 

• Explicit solution of the BHZ model  pair of helical edge states exponentially 
localized at the edge 
 

Physical properties of the helical edge states C. 

• The concept of “helical” edge 
state  states with opposite spin 
counter-propagate at a given 
edge 

• QH protected by “chiral” edge 
states; QSH edge states protected 
due to destructive interference 
between all possible 
backscattering paths 
 • SOC provides spin-momentum 
locking 

• Clockwise and anticlockwise 
rotation of spin pick up ±π phase 
leading to destructive interference 
 

Topological protection of the helical edge states 1. 



• Define the “chirality” operator 
 

• Electron operators: 
 

II. Two-Dimensional Topological Insulators 
Physical properties of the helical edge states C. 

• If TR symmetry is not present 
 

Topological protection of the helical edge states 1. 
• The physical description of edge state protection works only for single pair of 

edge states 
• With (say) two forward-movers and two backward-movers backscattering is 

possible without spin flip 
• In other words, TRS perturbations can destroy edge states in pairs 
• Robust or non-dissipative edge transport requires odd number of edge states 

 

• Any operator that changes C by 2(2n-1) is odd under TR 
 



II. Two-Dimensional Topological Insulators 

 Only two TR invariant non-chiral interactions can be added 
 

Physical properties of the helical edge states C. 

 Combined with Umklapp term we get (opens a gap at kF = π/2) 
 

Interactions and quenched disorder 2. 

• We can “bosonize” the Hamiltonian 
 

• The forward scattering term simply renormalizes the parameters K and vF 
 

forward 
scattering term 

Two-particle 
backscattering or 
“Umklapp” term 

• Boson to fermion field operators 
 



II. Two-Dimensional Topological Insulators 
Physical properties of the helical edge states C. 

• Total Hamiltonian 
 

Interactions and quenched disorder 2. 

• Interactions can spontaneously break time-reversal symmetry 
• TR odd single-particle backscattering: 

 • RG analysis  Umklapp term relevant for K < 1/2 with a gap: 
• Bosonize Nx and Ny . For gu < 0 fixed points at 

 

Umklapp term 

• Due to thermal fluctuations TRS is restored for T > 0 
 • For 
 

mass order parameter Ny is disordered + TR is preserved with a gap 

• For gu < 0, Ny is the (Ising-like) ordered quantity at T = 0 
 



II. Two-Dimensional Topological Insulators 
Physical properties of the helical edge states C. 

• Total Hamiltonian 
Interactions and quenched disorder 2. 

Umklapp term 

• Two-particle backscattering due to quenched disorder Gaussian random variables 

• The “replica trick” in disordered systems shows disorder relevant for K < 3/8 
• Nx and Ny show glassy behavior at T = 0 with TRS breaking; TRS again restored 

at T > 0 
• Where would all these interactions come from? locally doped regions? Band 

bending? 
• But edge states are immune to electrostatic potential scattering 
• Potential inhomogeneities can trap bulk electrons which may then interact with 

the edge electrons 
 

K < 1 



II. Two-Dimensional Topological Insulators 
Physical properties of the helical edge states C. 

 Static magnetic impurity breaks local TRS and opens a gap 
 

Interactions and quenched disorder 2. 

 Quantum impurity  Kondo 
effect: 
 

• Doing the “standard” RG procedure we 
get flow equations 
 



II. Two-Dimensional Topological Insulators 
Physical properties of the helical edge states C. 

• Static magnetic impurity breaks local TRS and opens a gap 
Interactions and quenched disorder 2. 

• Quantum impurity  Kondo 
effect 

1. At high temperature (T) 
conductance (G) is log 

2. For weak Coulomb 
interaction (K > 1/4) 
conductance back to 
2e2/h. At intermediate T 
the G ~ T2(4K-1) due to 
Umklapp term 
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effect 

1. At high temperature (T) 
conductance (G) is log 

2. For weak Coulomb 
interaction (K > 1/4) 
conductance back to 
2e2/h. At intermediate T 
the G ~ T2(4K-1) due to 
Umklapp term 

                   
                       
                     
                          
                         
             

3. For strong Coulomb interaction (K < 1/4) 
G = 0 at T = 0 due to Umklapp. At 
intermediate T the G ~ T2(1/4K–1) due to 
tunneling of e/2 charge  
 



II. Two-Dimensional Topological Insulators 
Physical properties of the helical edge states C. 

Helical edge states and the holographic principle 3. 
• The physical description of edge state protection works only for single pair of 

edge states 
• With (say) two forward-movers and two backward-movers backscattering is 

possible without spin flip 
• In other words, TRS perturbations can destroy edge states in pairs 
• Robust or non-dissipative edge transport requires odd number of edge states 
• Fermion doubling theorem 

 
E
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II. Two-Dimensional Topological Insulators 
Physical properties of the helical edge states C. 

Transport theory of the helical edge states 4. 
• Using Landauer-Büttiker formalism for an n-

terminal device 
 

• For the helical edge channels we expect 
 

• For a 2-point transport measurement between terminals 1 and 4 
 



II. Two-Dimensional Topological Insulators 
Physical properties of the helical edge states C. 

Transport theory of the helical edge states 4. 
• If the transport is dissipationless where is the 

resistance coming from? 
• In QSHE don’t we have spin currents of e2/h + 

e2/h = 2e2/h and charge currents of e2/h – e2/h = 
0? 

       
     

  
   

      

     

H=+e2/h

H=-e2/h

• Answer 1: dissipation comes from the contacts. Note that transport is 
dissipationless only inside the HgTe QW 

• Answer 2: We do measure charge conductance! The existence of helical edge 
channels is inferred from charge transport measurements 



II. Two-Dimensional Topological Insulators 
Topological excitations D. 

• Quantized charge at the edge of domain wall 
o Jackiw-Rebbi (1976) 
o Su-Schrieffer-Heeger (1979) 

• Helical liquid has half DOF as normal liquid  e/2 charge at domain walls 
• Mass term ∝ Pauli matrices  external TRS breaking field 
• Mass term to leading order 

 

Fractional charge on the edge 1. 

• Current due to the mass field 
 

• For m1 = m cos(θ), m2 = m sin(θ), and m3 = 0 
 

• Topological response  net charge Q in a region [x1,x2] at time t = difference in 
θ(x,t) at the boundaries 
 • Charge pumped in the time interval [t1, t2] 
 



II. Two-Dimensional Topological Insulators 
Topological excitations D. 

Fractional charge on the edge 1. 
• Two magnetic islands trap the electrons 

between them like a quantum wire 
between potential barriers 

• Conductance oscillations can be 
observed as in usual Coulomb blockade 
measurements 

• Background charge in the confined 
region Q (total charge) = Qc (nuclei, etc.) 
+ Qe  (lowest subband) 

 Flip relative magnetization  pump e/2 
charge 

• Continuous shift of peaks with θ(B) 
                                     • AC magnetic field 

drives current 
 



II. Two-Dimensional Topological Insulators 
Topological excitations D. 

Spin-charge separation in the bulk 2. 

       
     

  
   

      

     

H=+e2/h

H=-e2/h
       

     
  

   

      

     

Ej

• Simplified analysis: 
o Assume Sz is preserved 
o QSHE as two copies of QHE 

• Thread a π (units of ℏ = c = e = 1) flux ϕ 
• TRS preserved at ϕ = 0 and π; also, π = –π 
• Four possible paths for ϕ↑ and ϕ↓: 

 • Current density from E||: 
 • Net charge flow: 
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II. Two-Dimensional Topological Insulators 
Quantum anomalous Hall insulator E. 

• The trio is finally complete! 
 

Ordinary Hall Effect 
with external magnetic 
field (H) 

Pure Spin Hall Effect Anomalous Hall Effect 
with magnetization (M) 
 

Hall voltage but no spin 
accumulation 

Spin accumulation but no 
Hall voltage 

Hall voltage and spin 
accumulation 



II. Two-Dimensional Topological Insulators 
Quantum anomalous Hall insulator E. 

• Quantum Anomalous Hall Effect (QAHE) described by upper 2×2 block of the 
QSHE, i.e. 2-band model with explicit TRS breaking 
 

• The quantized Hall conductance is determined by 
 

• With TRS breaking charge Hall conductance of counter propagating states do 
not cancel perfectly 

• For system doped with magnetic impurities, splitting term added: 
 

• Upper and lower blocks have masses M + (GE – GH)/2 and M + (GE + GH)/2 
• QAHE is given by GEGH < 0 
• Mn-doped HgTe QWs or Cr- or Fe-doped Bi2Se3 and Bi2Te3 thin films satisfy 

above condition for different physical reasons 
• In HgTe the 2 bands have opposite signed exchange coupling, i.e. s-d and p-d 
• In Bi2Se3 and Bi2Te3 sign of the spin different in the two blocks 

 



II. Two-Dimensional Topological Insulators 

• HgTe width (dQW) in the range from 4.5 nm to 12.0 nm 
were grown with phase transition at 6.3 nm 

• Ranges: Vg ≥ –1.0 V (n-doped), –1.9 V < Vg < –1.4 V 
(insulating), and Vg < –2.0 V (p-doped) 

• Hall resistance Rxy for L = 600 μm and W = 200 μm 
 

Experimental Results F. 
Quantum well growth and the band inversion transition 1. 



II. Two-Dimensional Topological Insulators 
Experimental Results F. 

Quantum well growth and the band inversion transition 1. 

• For normal ordering of bands the 
Landau levels will get further apart 
as B increases 

• For inverted bandstructures 
Landau levels will cross at a 
certain B 

• Only inverted bandstructures will 
reeneter the quantum Hall states 
when B field increases 
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II. Two-Dimensional Topological Insulators 
Experimental Results F. 

Longitudinal conductance in the quantum spin Hall state 2. 

• For dQW < 6.3 nm resistance is in the 
MΩ, i.e. insulating 

 For dQW > 6.3 nm resistance is 100 kΩ 
• 100 kΩ ≫ h/2e2 (12.8 kΩ) 

• The extra resistance may come from 
inelastic scattering 

• Estimate inelastic mean free path ~ 1 
μm 

• Experiments on device with L = 1 μm 
• 4-point measurements give Rxx = h/2e2 

as expected 
• Changing width between W = 1 μm 

and 0.5 μm gives same result  there 
is no parasitic bulk conduction 
 



II. Two-Dimensional Topological Insulators 
Experimental Results F. 

Magnetoconductance in the quantum spin Hall state 3. 

• There is a large anisotropy in 
magnetoconductance for magnetic 
fields pointing in-plane or 
perpendicular to the plane 
 



II. Two-Dimensional Topological Insulators 
Experimental Results F. 

Nonlocal conductance 4. 
• Using the Landauer-Buttiker formulas we can compute resistance among 

different terminals 
• This type of “nonlocal” conductance was measured and found to match with 

theory 
• This was unambiguous proof that these are helical edge states 

 



II. Three-Dimensional Topological Insulators 

Effective model of the three-dimensional topological insulator A. 

• Simple model Hamiltonian for Bi2Se3, Bi2Te3, Sb2Te3 a natural extension of HgTe 
• SOC drives band inversion at the Γ point 
• Full bulk gap with 2D massless “helical” and “holographic” Dirac surface 

spectrum 
• TR breaking perturbation opens a gap in the surface spectrum  Topological 

Magnetoelectric Effect 
 

• Rhombohedral crystal structure 
with space group: 
 • Each “quintuple layer” consists of 
five atoms per unit cell 

• Each quintuple layer is ~ 1 nm 
thick 

• The primitive lattice vectors are 
t1, t2, t3 

• Under inversion the primed atoms 
transform into the unprimed 
atoms 
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II. Three-Dimensional Topological Insulators 
Effective model of the three-dimensional topological insulator A. 

• Consider the example Bi (6s26p3) and Se 
(4s24p4) 

• Recombine the orbitals in a single unit 
cell according to their parity 

• In step I we have 3 states (2 odd, 1 even) 
from each Se p-orbital and 2 states (1 
odd, 1 even) from each Bi p-orbital 

• In step II crsytal field splits pz into px and 
py 

• In step III we turn on the L.S spin-orbit 
splitting term 

• |P1z
+⟩ and |P2z

–⟩ as a function of spin-
orbit strength λ 

• λ(Bi/Se) = xλ0(Bi/Se) with λ0(Bi) = 1.25 
eV and λ0(Se) = 0.22 eV 

• Phase transition occurs before the real 
values of spin-orbit strength 

• Band inversion of opposite parity states 
at odd TRIM  topologically nontrivial 
 

Hybridized states 



II. Three-Dimensional Topological Insulators 
Effective model of the three-dimensional topological insulator A. 

• Similar to HgTe we can define a model 
Hamiltonian respecting symmetries 

• The 4 closest states can be chosen as our 
basis 
 

• The model Hamiltonian in the above 
basis can be written as 
 

Parameters determined 
by comparison to ab 
initio calculations 

• Hamiltonian is like a 3D anisotropic Dirac model but with k-dependent mass 
• Extra cubic terms  reduce rotational symmetry about z-axis from SO(2) to C3 

 



II. Three-Dimensional Topological Insulators 
Surface states with a single Dirac cone B. 

• Similar to the HgTe case split the Hamiltonian into portions with and without kz 
since we break translational symmetry along the z-axis 
 

• The form of the first Hamiltonian is similar to the one in QSHE 
• Surface state at kx = ky = 0 is determined by the same equation as the QSHE 
• Surface state exists for M/B1 > 0. In the examples below B1B2 > 0, A1A2 > 0 
• Note: surface helicity is determined by sign of A1/B1; here spins have more 

than 2 polarization states 
 Once again projection of bulk Hamiltonian on to surface states we get 

 
• For A2 = 4.1 eV, vF = A2/ℏ = 6.2 × 105 m/s vs. ab initio result of vF = 5 × 105 m/s 

 



II. Three-Dimensional Topological Insulators 
Crossover from three dimensions to two dimensions C. 

• The models describing 2D and 3D topological insulators are quite similar 
• But is a thin 3D film a trivial or nontrivial insulator? 
• Consider a 3D TI with finite thickness d in the z-direction 
• For kx = ky = 0 we have 

 

• For A1 = 0 the Hamiltonian is diagonal and we can compute the eigenstates as 
 

• For M < 0 and a small enough d the subbands are 
normally ordered 

• As d increases there must be an electron-hole 
subband crossing at some d = dc 

• For A1 = 0 the subband energies as a function of 
distance look similar to the HgTe QW 
 

Note: multiple crossings 



II. Three-Dimensional Topological Insulators 
Crossover from three dimensions to two dimensions C. 

• For kx = ky = 0 we have 

• For A1 = 0 the subband energies as a function of 
distance look similar to the HgTe QW 

Note: multiple crossings 
• For A1 ≠ 0 the subbands on the right (for A1 = 0) 

hybridize 
• Hybridization gives special states |S1

+⟩, which is 
superposition of |E2n–1⟩ and |H2n⟩ (for n = 1, 2, …), 
and |S2

–⟩ (superposition of |H2n–1⟩ and |E2n⟩) 
• Crossing is permitted only with the next closest 

subband and they intersect multiple times 
• Thin film oscillates between trivial and nontrivial 

with transition points given by (A1 → 0) 
 



II. Three-Dimensional Topological Insulators 

• For kx = ky = 0 

• Hybridization gives special states |S1
+⟩, which is 

superposition of |E2n–1⟩ and |H2n⟩ (for n = 1, 2, …), 
and |S2

–⟩ (superposition of |H2n–1⟩ and |E2n⟩) 
• Multiple crossings give relative parity oscillations 

with thickness 
• |S1

+⟩ and |S2
–⟩ are localized at the opposite surfaces 

of the 3D TI slab; oscillations in wave function 
also go as ~ π(B1/|M|)1/2 
 

Crossover from three dimensions to two dimensions C. 

• Dependence of critical 
thickness on A1 is shown in the 
figure to the right 

• As d → ∞, |S1
+⟩ and |S2

–⟩ 
decouple and become surface 
state of the 3D TI 
 



II. Three-Dimensional Topological Insulators 

• Relation between electron and hole subbands in the d → ∞ limit suggests another 
way to describe 3D to 2D crossover 

• The surface is described by  
 

Crossover from three dimensions to two dimensions C. 

• The upper and lower block diagonal elements correspond to the two surfaces 
• For slabs of finite thickness a coupling term M2D(k) can be added 

 

• Changes in sign of M2D tell if phase is trivial or not. M2D oscillates with d since 
the surface wave functions oscillate 

• In other words, both top-down and bottom-up approaches agree 
• In real materials, like Bi2Se3 we can expect the nontrivial phase to first occur at a 

thickness of ~ 3 nm or three quintuple layers 
 



II. Three-Dimensional Topological Insulators 
Electromagnetic properties D. 

Half quantum Hall effect on the surface 1. 
• The only momentum independent term one can add is 
• The perturbed Hamiltonian has the spectrum 

 
• Only parameter mz can open a gap and destabilize the surface states 
• The term mzσz breaks TRS; but (say) with 2 identical Dirac cones, with 

imaginary coupling, we have gapped system with TRS 
 

• But with term mzσz the surface will be  
 

• With the generic two-band model we consider the winding of: 
• A “meron” configuration d(k) covers half the unit sphere 
• With winding number ±1/2 we have Hall conductance (valid for mz → 0) 

 

• Parity anomaly in high energy physics 
• Above analyis only applies in continuum, i.e. |mz|/A2 ≪ 2π/a 
• Unlike QAHE, where M → 0, Hall conductance = 0 or 1 instead of ±1/2 

 



• Note: unlike QAHE upper and lower 2 × 2 blocks are not TR conjugate 
• Disorder: Nomura, Koshino, and Ryu showed that the surface state is metallic 

even for an arbitrary impurity strength 
• TR breaking disorder  unitary class 
• For infinitesimal TR breaking σxx = 0 and σxy = ±e2/2h 
• Exchange interaction with impurity given by 

 

II. Three-Dimensional Topological Insulators 
Electromagnetic properties D. 

Half quantum Hall effect on the surface 1. 
• Deviations from the Dirac effective model at large momenta  corrections to 

the Hall conductance 
 

     is independent of large momentum contributions 
• The effect of the mass term mzσz on the large-momentum sector of the theory is 

negligible for mz → 0 
• Contributions to σH from large momenta  continuous functions of mz; 

therefore Δ σH should not be affected 
• TR transforms the system with mass mz to that with mass –mz 

 



II. Three-Dimensional Topological Insulators 
Electromagnetic properties D. 

Half quantum Hall effect on the surface 1. 

• In a usual Fermi liquid, if the surface state has a finite kF, an RKKY interaction 
between the impurity spins is introduced 

• The sign of RKKY oscillates with wave length ∝ 1/2kF 
• For kF → 0 the sign of the RKKY interaction does not oscillate but is uniform 
• The resulting uniform spin-spin interaction (ferromagnetic) is determined by the 

coupling to the surface electrons 
• A uniform spin polarization can maximize the gap opened on the surface  

energetically favorable 
• Therefore, the system can order ferromagnetically when the chemical potential 

is near the Dirac point 
• This mechanism provides a way to generate a surface TR symmetry breaking 

field by 
o Coating the surface with magnetic impurities 
o Tuning the chemical potential near the Dirac point 

 



II. Three-Dimensional Topological Insulators 
Electromagnetic properties D. 

Topological magnetoelectric effect 2. 

• Unlike QHE in the pure 2D system surface quantum Hall cannot be measured 
using DC transport for the reasons: 
o Surface of a 3D TI is a closed manifold (i.e. no edges) 
o If TRS is broken only on a partial patch of the surface chiral states on the 

domain wall give σH = e2/h and not e2/2h 
 

• The complete EM response of the system is described by 
the modified constituent equations (P3 = ±1/2) 
 

• A new probe is needed  Topological Magnetoelectric Effect (TME) 
 

• The TRS broken patch  (right) is like 
the boundary between n and n+1 level 
QHE 
 



• Interesting phenomena appear when we consider 
the dynamics of the external charge 

• For 2DEG at a distance d above the surface of the 
3D TI and if the motion of the 2DEG electrons is 
slow enough compared to ℏ/m the image 
monopoles will follow the electrons adiabatically 

• The electron forms an electron-monopole 
composite, i.e. a “dyon” 

• When 2 electrons wind around each other, each 
electron perceives the magnetic flux of the image 
monopole attached to the other electron 
 

II. Three-Dimensional Topological Insulators 
Electromagnetic properties D. 

Image magnetic monopole effect 3. 
• Direct consequences of the TME effect is the image magnetic monopole effect 

 



II. Three-Dimensional Topological Insulators 
Electromagnetic properties D. 

Topological Kerr and Faraday rotation 4. 
• Another TME effect is through the transmission 

and reflection of polarized light 
• Standard Faraday effect requires an external B 

field 
• For TME we Faraday rotation occurs due to 

unusual boundary conditions at the interface of 
the TI and ferromagnetic insulator (FMI) 

• The rotation angles for the Kerr and Faraday 
effect are 
 

• Problems: 
o dependence on material parameters 
o Detection obscured by standard EM response 

• New scheme: combine Faraday and Kerr 
 



II. Three-Dimensional Topological Insulators 
Electromagnetic properties D. 

Related Effects 5. 
• The magnetic monopole carries a charge, i.e. monopole with unit flux carries e/2 

charge 
 

• There is a charge pumping effect when monopole motion  couples to electric 
charge 

• When electron-electron interaction is considered interesting new effects can occur 
• We can get a so-called axion from fluctuations of P3 due coupling between spin-

waves and the electromagnetic field 
• Polariton can be formed by the hybridization of the spin-wave and photon 
• The polariton gap is controlled by the magnetic field, which may realize a tunable 

optical modulator 
• Inter-surface exciton condensate can be formed 
• Charge current on the surface can flip the magnetic moment of the magnetic layer 
• In other words, charge density is coupled to magnetic textures such as domain 

walls and vortices 
• Potential applications in spintronics 

 



II. Three-Dimensional Topological Insulators 
Experimental results E. 

Material growth 1. 

• Cava group (Princeton): Bulk materials were first grown for experiments on 
topological insulators (Bi1-xSbx, Bi2Se3, Bi2Te3, and Sb2Te3) 

• Fisher group (Stanford): Bi2Te3 
• Cui group (Stanford): Bi2Se3 nanoribbons 
• Xue group (Tsinghua): MBE grown thin films of Bi2Se3, Bi2Te3 
• Due to layered structure thin films can also be obtained by exfoliation from bulk 

samples 
• Stoichiometric compounds relatively easy to grow 
• Due to intrinsic doping from vacancy and anti-site defects Bi2Se3, Bi2Te3, are n-

type and Sb2Te3 are p-type in the bulk 
• Controlled doping of Bi2Se3 with Sb and Ca and Bi2Te3 with Sn gives control 

over the chemical potential 
• Cu doping causes  Bi2Se3 to become superconducting (nontrivial?) 
• Fe and Mn dopants may yield ferromagnetism 

 



II. Three-Dimensional Topological Insulators 
Experimental results E. 

ARPES 2. 

• Unlike Bi1-xSbx second generation TIs 
have only one Dirac cone 

• Spin-resolved ARPES can show spin 
polarization of surface states 

• However, “hexagonal warping” effects 
appear in the data away from the Dirac 
point 
 

• ARPES spectra are shown for several 
thicknesses of a Bi2Se3 thin film, which 
show the evolution of the surface 
states. 
 



II. Three-Dimensional Topological Insulators 
Experimental results E. 

STM 3. 
• Good agreement is found between the 

integrated density of states from 
ARPES and STM 

• STM also shows protection against 
backscattering 
                         
                     
                           
                      

                      
                    
               



II. Three-Dimensional Topological Insulators 
Experimental results E. 

STM 3. 
• Good agreement is found between the 

integrated density of states from 
ARPES and STM 

• STM also shows protection against 
backscattering 
 • Like graphene surface 
states would have a 
relativistic (Dirac-like) 
Landau level spectrum 

• We can also observe 
Landau levels in a 
magnetic field 
 



Experimental results E. 
Transport 2. 

• The fact that cyclotron resonance 
frequency only scales with 
perpendicular magnetic field shows 2D 
nature of surface states 

• One way to reduce bulk doping is 
using thin films obtained by 
mechanically exfoliation or epitaxial 
growth 

• An important advantage of a sample of 
mesoscopic size is the possibility of 
tuning the carrier density by an 
external gate voltage 

• Magnetoresistance of a nanoribbon 
exhibits a primary hc/e oscillation, 
which corresponds to Aharonov-Bohm 
oscillations of the surface state around 
the surface of the nanoribbon 
 

II. Three-Dimensional Topological Insulators 



Experimental results E. 
Transport 2. 

• The fact that cyclotron resonance 
frequency only scales with 
perpendicular magnetic field shows 2D 
nature of surface states 

• One way to reduce bulk doping is 
using thin films obtained by 
mechanically exfoliation or epitaxial 
growth 

• An important advantage of a sample of 
mesoscopic size is the possibility of 
tuning the carrier density by an 
external gate voltage 

• Magnetoresistance of a nanoribbon 
exhibits a primary hc/e oscillation, 
which corresponds to Aharonov-Bohm 
oscillations of the surface state around 
the surface of the nanoribbon 
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II. Three-Dimensional Topological Insulators 
Other topological insulator materials F. 

• Topological materials HgTe, Bi2Se3, Bi2Te3, and Sb2Te3 provided us with a 
prototype material for 2D and 3D TIs 

• Other 3D TIs: tetradymite semiconductors like Thallium-based III-V-VI2 
ternary chalcogenides 

• Strained bulk HgTe is a topological insulator; distortion along [111] opens a gap 
between LH and HH bands 

• A similar band structure also exists in ternary Heusler compounds; fifty of them 
are found to exhibit band inversion; other interesting properties 
o Superconductivity 
o Magnetism 
 Heavy-fermion behavior 

• QSHE has been proposed in Na2IrO3 
• Topolgical Mott insulator phases have been proposed in Ir-based pyrochlore 

oxides Ln2Ir2O7 with Ln = Nd, Pr 
• SmB6 was recently verified as a Kondo topological insulator 

 



IV. General Theory of Topological Insulators 
Topological field theory A. 

• Interested in long-wavelength and low-energy properties of a condensed matter 
system 

• In this limit details of the microscopic Hamiltonian are not important 
• Broken symmetry states  order parameter, symmetry and dimensionality 
• SPT states  coefficient of the topological term identified as the topological 

order parameter 
• Topological Field Theory 

(TFT) can be developed for 
topological insulators 

• Unlike Topological Band 
Theory (TBT), TFT can 
accommodate interactions and 
disorder 

• In the limit of no interactions 
and disorder TFT reduces to 
TBT 



IV. General Theory of Topological Insulators 
Topological field theory A. 

Chern-Simons insulator in 2+1 dimensions 1. 
• TFT for the QH system in 2+1 D 

• TFT for the QH system in 2+1 D 

where G(k,ω) is imaginary-time single-particle Green's function μ, ν, ρ = 0, 1, 
2 ≡ t, x, y 

• For an interacting system we can have a map from k-space to space of 
nonsingular Green functions in the group GL(n, ℂ); 3rd homotopy group labeled 
by an integer 

• The winding number for this homotopy class is exactly measured by C1, where 
n ≥ 3 is the number of bands 

• For G → G0, integral over ω gives 



IV. General Theory of Topological Insulators 
Topological field theory A. 

Chern-Simons insulator in 2+1 dimensions 1. 
• Under TR, since A0 → A0 and A → –A, Chern-

Simons theory breaks TRS in 2+1 D 
• Taking a functional derivative with respective to 

Aμ we get: 

• Splitting into temporal component we get charge accumulated: 

• Charge accumulated due to magnetic field; i.e. magnetic flux pumps charge 
• The spatial component of the space-time current gives 

• Electric field gives transverse current with σxy = (C1/2π) e2/h 
• At least in the non-interacting case it’s easy to see that C1 = 2πn since the Berry 

phase is quantized 
• This is the usual quantum Hall response, i.e. σxy = ne2/h (with n ∈ ℤ) 



• This labels the homotopy group 
• For a non-interacting system, C2 can be obtained by explicit integration over ω to 

give a Berry-like integration in k-space for i, j, k, ℓ = 1, 2, 3, 4 

IV. General Theory of Topological Insulators 
Topological field theory A. 

Chern-Simons insulator in 4+1 dimensions 2. 
• Advantage of TFT of QHE  Generalization to all odd space-time 

dimensions 

• The action is explicitly invariant under TR 
• C2 is written in terms of full Green’s functions 

• The physical response of 4+1 D Chern-Simons insulators is given by 

which is the nonlinear response to the external field Aμ 



IV. General Theory of Topological Insulators 
Topological field theory A. 

Chern-Simons insulator in 4+1 dimensions 2. 

• Advantage of TFT of QHE  Generalization to all odd space-time 
dimensions 

• The physical response of 4+1 D Chern-Simons insulators is given by 

which is the nonlinear response to the external field Aμ 
• To understand this response better, consider a special field configuration 

• Non-zero components  Fxy = Bz and Fzt = –Ez 

• Integrating in the x, y dimensions we get 



IV. General Theory of Topological Insulators 
Topological field theory A. 

Dimensional reduction to the three-dimensional ℤ2 topological insulator 3. 
• 3D and 2D TIs can be obtained by dimensional 

reduction on the 4D QHE 
• Only consider Aμ ≡ A(x0, x1, x2, x3) 
• Consider a geometry where x4 forms a small circle 
• For fixed k4 we obtain an effective TFT in 3+1 D 

• The flux due to A4(x, t, x4) through the compact extra dimension is 

• TRS constrains the value of the flux to two values: 0 and π (for C2 = 1) 
• Using a model 3D Hamiltonian (general interacting) is more practical; need to 

define an order parameter 

where G(k, u = 0) ≡ G(k0, k, u = 0) ≡ G(k0, k) is the imaginary-time single-
particle Green's function of the fully interacting many-body system; u = 1 is 
topologically trivial 



• For the model of 2nd generation 3D TIs the above formula can be evaluated 
explicitly as 

IV. General Theory of Topological Insulators 
Topological field theory A. 

Dimensional reduction to the three-dimensional ℤ2 topological insulator 3. 
• Topological order parameter 

• The following identity is essential for the definition of P3 

• Unlike the Chern-Simons insulator P3 is not strictly quantized; it can vary 
continuously between 1/2 and 0 when TRS is broken 

• For a non-interacting system, integrating out ω, we get the elegant formula 

• The θ-term for 3D TI vs. 2+1 D QH 
• θ-term dominates Maxwell term at low energies in 2+1 D by dimensional 

analysis 
• In 3D TI θ- and Maxwell terms have same scaling dimension 

• The full set of modified Maxwell's equations + θ-term: 



IV. General Theory of Topological Insulators 
Topological field theory A. 

Dimensional reduction to the three-dimensional ℤ2 topological insulator 3. 
• The full set of modified Maxwell's equations + θ-term: 

• In component form 

where D = E + 4πP and H =  B - 4πM 
• Alternatively one could absorb the topological terms while defining D and H 

(previous section) 

• The topological response can be determined by taking a functional derivative of 
the topological action with respect to Aμ 



IV. General Theory of Topological Insulators 
Topological field theory A. 

Dimensional reduction to the three-dimensional ℤ2 topological insulator 3. 

• When P3 = P3(z) the topological response equation becomes 

1. Half-QH effect on the surface of a 3D topological insulator 

• Integration along the z-direction gives the total Hall current 

with total 2D Hall conductance 

• For a interface between a topologically nontrivial 
insulator with P3=1/2 and a topologically trivial 
insulator with P3=0 (say vacuum) the Hall 
conductance is σ = ΔP3 = ±1/2 

• Aside from an integer ambiguity, the QH 
conductance is exactly quantized, independent of 
the details of the interface 



• Since j = ∂tP, for a constant static magnetic field, 
we can write 

IV. General Theory of Topological Insulators 
Topological field theory A. 

Dimensional reduction to the three-dimensional ℤ2 topological insulator 3. 

• When P3 = P3(t) the topological response equation: 
2. Topological magnetoelectric effect induced by a temporal gradient of P3 

which can be compactly written as 

• This can also be viewed as the higher dimensional charge pumping 
• Witten Effect: assume we have magnetic charge distribution, i.e. ∇.B ≠ 0 

• The monopole density is given by 

• When P3 is changed adiabatically from 0 to Θ/2π the monopole acquires an 
electric charge  



IV. General Theory of Topological Insulators 
Topological field theory A. 

Further dimensional reduction to the two-dimensional ℤ2 topological 
insulator 

4. 

• Similar to 3D TIs, topological order parameter can be defined for 2D TIs 
• We need two Wess-Zumino-Witten extension parameters (u, v) since dimensional 

reduction needs to be performed twice on the 4D QH state 
• For a general interacting insulator, the 2+1 D topological order parameter is 

expressed as 

• This topological order parameter is valid for interacting QSH systems in 2+1 D, 
including states in the Mott regime 

• Note: This is not true for all Mott insulators; P3 might not be a good topological 
order parameter for some 3D Mott insulators 

where ϵμνρστ is the totally antisymmetric tensor in five dimensions, taking value 1 
when the variables are an even permutation of (k0, k1, k2, u, v) 



IV. General Theory of Topological Insulators 
Topological field theory A. 

General phase diagram of topological Mott insulator and topological 
Anderson insulator 

5. 

• Topological order parameter defined earlier not applicable to all interacting 
systems 

• For example, Topological order parameter difficult to compute when we have 
ground state degeneracy or intrinsic topological order; TFT is still possible 

• In 3D, Fractional TIs (FTIs) have P3 = rational multiple of 1/2 
• Breaking TRS on the surface of FTI  half of Fractional QHE (FQHE) 
• In general, consider H = H0(λ1, λ2, …) + H1(g1, g2, …) 
• For F → B we have dynamically generated SOC 
• Several proposals 

• Topological Mott insulators (TMI) 
• Topological Kondo insulators (TKI) 
• … 

• For example, consider the Kane-Mele-Hubbard 
model 



• Interactions can be dealt with TFT be solving for full Green’s function 
• Useful simplification: when there is an adiabatic connection to non-interacting 

system we can define a “topological Hamiltonian”  

IV. General Theory of Topological Insulators 
Topological field theory A. 

General phase diagram of topological Mott insulator and topological 
Anderson insulator 

5. 

• For example, consider the Kane-Mele-Hubbard model 

• Remarkably, the topological Hamiltonian captures the topological invariant of 
the full interacting problem 

• Other simplifications: Self-energy is local like in Dynamical Mean Field 
Theory (DMFT), i.e. Σ(ω, k) ≈ Σ(ω) 

• Expression for topological order parameter 



IV. General Theory of Topological Insulators 
Topological field theory A. 

General phase diagram of topological Mott insulator and topological 
Anderson insulator 

5. 

• Other simplifications: Self-energy is local like in Dynamical Mean Field 
Theory (DMFT), i.e. Σ(ω, k) ≈ Σ(ω) 

• Expression for topological order parameter 

• Integrate out frequency part 

• Winding number becomes 

• When Σ(ω) is diagonal in orbital space: 
Chern number = Frequency-Domain Winding Number × Chern number of a 
mean-field Hamiltonian 



IV. General Theory of Topological Insulators 
Topological field theory A. 

General phase diagram of topological Mott insulator and topological 
Anderson insulator 

5. 

• For disordered systems, we can use TFT 
be replacing Green’s functions by the 
disorder-averaged Green's functions 

• Interpret g as the disorder strength in the 
phase diagram 

• Effect of disorder on QSHE 
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• In 1D, there are only two TRIM, and a “TR polarization” can be defined as the 
product of δi: 

• Similarly for 2D we can define 

IV. General Theory of Topological Insulators 
Topological band theory B. 

• Only works for non-interacting system 
• Important tool in the discovery of new topological materials 
• Difficult to evaluate ℤ2 invariants for a generic band structure 
• Three approaches 

• Spin Chern numbers 
• Topological invariants constructed from Bloch wave functions 
• Discrete indices calculated from single-particle states at Time-Reversal 

Invariant Momentum (TRIM) in the Brillouin zone 
• Consider the matrix 
• At the TRIM B(Γi) is antisymmetric; we can define 

• Trivial: (–1)ν2D = +1 and Non-trivial: (–1)ν2D = –1   



• It is useful to view these 
invariants as components of 
a mod 2 reciprocal lattice 
vector 

• For a dislocation with 
Burgers vector b it was 
shown that there will be 
gapless modes on the 
dislocation if Gν⋅b=(2n+1) 
π for integer n 

• “Dimensional increase” to 3D 

IV. General Theory of Topological Insulators 
Topological band theory B. 

• Weak TI: (–1)ν3D = +1 and Strong TI: (–1)ν3D = –1 
• Product of any four δi for which Γi lie in the same 

plane are gauge invariant 
• Therefore we get 3 more invariants defined by 



• With inversion symmetry 
rewrite δi as 

• The surface band structure 
(bottom figures) will 
resemble 

• (a): paths connecting a 
filled circle to an empty 
circle 

• (b): paths connecting 
two filled circles or two 
empty circles 

IV. General Theory of Topological Insulators 
Topological band theory B. 

where ξ2m(Γi) = ±1 is the parity 
eigenvalue of the 2mth band at Γi) 
and ξ2m = ξ2m–1  are Kramers pairs 
• This algorithm also applies to non-inversion symmetric materials which can 

adiabatically deformed into inversion symmetric ones without closing the energy 
gap 



• It’s intuitive that there’s a connection between TBT and TFT in the non-
interacting limit 

• TFT requires knowledge of the band structure over the entire Brillouin zone 
• Recall the matrix 

IV. General Theory of Topological Insulators 
Reduction from topological field theory to topological band theory C. 

• The TFT formula for P3 then reduces to 

• The TFT formula for P3 gives deg(f), where f: T3 → SU(2) 
• Due to TR symmetry, if we choose the image point as one of the two 

antisymmetric matrices in SU(2) (e.g. iσy) we have an interesting “pair 
annihilation” of those points other than the eight TRIM 

• In other words, Brillouin zone has redundancy in the non-interacting limit 
• The explicit relation between TFT and TBT is 

 



• Superconducting gap, in Bogoliubov-de Gennes (BdG) 
Hamiltonian, is analogous to band gap of insulators 

• 3He-B is a topological superfluid state; BdG 
Hamiltonian identical to 3D TI 

• Classification similar for Topological Superconductors 
(TSCs) and TIs in 2D 

• TRS breaking 2D TSCs are classified by ℤ like IQHE 
• TRS preserving 2D TSCs and 2D TIs are both ℤ2 
• TSCs in 1D are always ℤ2 with or without TRS 
• Subtlety: 3D TSC is ℤ while 3D TI is ℤ2 

V. Topological Superconductors and Superfluids 

• Aside from striking similarities between time-reversal symmetric TSCs and TIs, 
TRS breaking TSCs are interesting due to non-Abelian statistics and their 
potential application to Topological Quantum Computation (TQC) 

• px+ipy TSC with 𝒩𝒩 vortices has that many Majorana Zero Modes (MZMs) 
• Braiding vortices gives non-Abelian statistics 
• Simplest 𝒩𝒩 = 1 spinless chiral TSC first proposed by Read and Green in 2000 
• Spinful version predicted in Sr2RuO4; very little experimental progress 
• New proposals based on conventional superconductors proposed by including 

elements with high Spin-Orbit Coupling (SOC) 



• The simplest way to understand TRI TSCs is through 
their analogy with TIs 

• Similar to TRS breaking example: just as a QH state 
with Chern number N has N chiral edge states, a 
chiral TSC with topological invariant 𝒩𝒩 has 𝒩𝒩 chiral 
Majorana edge states 

• However, unlike IQHE, chiral Majoranas have half 
the Degrees of Freedom (DOF) as chiral electron 
edge states 

• Therefore, the chiral superconductor is the “minimal” 
topological state in 2D 

• Superconducting analogue of QSH state: a “helical” 
superconductor 

• Spin up: px+ipy; spin down: px–ipy 
• Counter-propagating Majorana Kramer’s pairs 
• These “Majorana modes,” and not “Majorana 

fermions,” superficially have the same Dirac-like 
dispersion as Majorana fermions in high energy 

V. Topological Superconductors and Superfluids 
Effective models of time-reversal invariant superconductors A. 



• Hamiltonian of the simplest nontrivial TRS breaking superconductor, the p+ip 
superconductor for spinless fermions 

V. Topological Superconductors and Superfluids 
Effective models of time-reversal invariant superconductors A. 

where         and  
• In the weak pairing phase with           the              chiral superconductor is known 

to have chiral Majorana edge states propagating on each boundary, described by 
the Hamiltonian where 

• Simplest model for the topologically nontrivial TRI superconductor in 2D: 

• Note that upper (lower) block, with              (           ) pairing, is analogous to 
spin up (down) Kramer partner  

• Hamiltonian has same form as BHZ model with PHS and k-dependent mass 
term     replaced by 

with 



V. Topological Superconductors and Superfluids 
Effective models of time-reversal invariant superconductors A. 

• Simplest model for the topologically nontrivial TRI superconductor in 2D: 

• Consider the edge state Hamiltonian 

• The Bogoliubov quasiparticles              in terms of electron operators 

• The form of this model is similar to 2D TIs; i.e. Bogoliubov quasiparticles 
behave like electrons in a TI 

• Although free electron edge states protected by TRS in TIs, is it also true for 
Bogoliubov quasiparticles? 

Eigenstates of 
BdG Hamiltonian 

• Time-reversal transformation of electron states implies        and 

with 



V. Topological Superconductors and Superfluids 
Effective models of time-reversal invariant superconductors A. 

• Similar to 2D, the 3D TSC Hamiltonian can be written as 

with 

where                    is a 3 × 3 matrix with 
• Ignoring dipole-dipole interaction term, and performing a spin rotation,       can 

be diagonalized to 

where         and  

with the Majorana condition  

• For μ > 0 the surface states are Majorana 
mode described by 

• Particle-hole symmetry enforces 
• Chemical potential at the Dirac point (μ = 0) 
• Spin lies in the surface plane 

• Spin winding around the momentum is well-defined and gives invariant ℤ 



• The above off-diagonal form is only possible with TRS + PHS 
• These two conditions also require hermiticity of     ; this means generic non-

hermiticity of 
• Using singular value decomposition we can write      ; we can 

deform (diagonal) matrix      into the identity without closing the bulk gap 
• Then defining   integer-valued topological invariant can be 

defined as 
 

• 1D and 2D invariants can be obtained by dimensional reduction 

• TSCs with and without TRS in 1, 2, or 3 dimensions is either ℤ2 or ℤ 
• Generic mean-field BdG Hamiltonian for a 3D TR invariant superconductor 

V. Topological Superconductors and Superfluids 
Topological invariants B. 

• In a different basis we have 

• The time-reversal matrix satisfies:          ,          , and 
where      is an N-component vector and      and       are N × N matrices 



V. Topological Superconductors and Superfluids 
Topological invariants B. 

• Consider      in the weak pairing limit 
• When the Fermi Surfaces (FSs) are non-degenerate, and      is only turned on 

around the FSs, the matrix elements of          between different bands are 
negligible; to leading order we have 

where         are eigenvectors of 

     are simply matrix 
elements of       
between          and its 
Kramers partner  

• In this approximation      are given by 

• Plugging the above expression for      into the general formula for       we get 



V. Topological Superconductors and Superfluids 
Topological invariants B. 

• Formulas from the last slide 

• Restrict the pairing to an energy shell              ; means only       is non-zero 
• This means       outside this energy range is an integer multiple of π 
• Standard (but not simple!) trigonometry gives  

in the limit          we have             the remaining two terms vanish 
• Therefore, the entire 2nd term of       vanishes 

• First term? 



V. Topological Superconductors and Superfluids 
Topological invariants B. 

• Main formulas 

• To the leading order, near the Fermi surface we have 

• In the limit                we have      ; more precisely we have  

• On differentiating we get 

which, in the vector form, looks like 

• The        term does indeed blow up at the Fermi surface  



V. Topological Superconductors and Superfluids 
Topological invariants B. 

• Main formulas 

• Plugging in all the formulas 

• Labeling the single band crossing the Fermi surface with n = 0 



V. Topological Superconductors and Superfluids 
Topological invariants B. 

• Main formulas 

• Labeling the single band crossing the Fermi surface with n = 0 

• Formal expression for the Chern number: 



Topological invariants B. 
• Topological invariant or winding number: 

V. Topological Superconductors and Superfluids 

• Chern number: 

• Consider an example: 
• Rashba spin-orbit coupling gives two spin-polarized Fermi 

surfaces with opposite Chern numbers of ±1 
• Consider a pairing function 
• The pairing function cannot be constant; it must change sign 

between different Fermi surfaces 
• Now, consider unconventional, i.e. momentum dependent 

pairing 
• Consider analogy to TRS breaking counterpart 
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Topological invariants B. 

• Topological invariant of 2D and 
1D TSCs obtained by dimensional 
reduction 

• Consider 3D Hamiltonian with kz 
replaced by θ 

V. Topological Superconductors and Superfluids 

dimens ional
reduction

• Topological invariant in 2D: 

• The Chern number obeys the properties: 
• For ms TRIMs enclosed in the sth Fermi surface we 

have 
• As a consequence of the Nielsen-Ninomiya theorem 

we have 

• Topological invariant for 2D TSCs: 

• In 1D each Fermi “surface” encloses 1 TRIM; invariant 
for 1D TSCs is 



V. Topological Superconductors and Superfluids 
Majorana zero modes in topological superconductors C. 

Majorana zero modes in p+ip superconductors 1. 
• The core of a p+ip superconducting vortex contains a localized quasiparticle with 

exactly zero energy: the Majorana Zero Mode (MZM) 
• The quasiparticle operator γ is the Majorana mode obeying [γ, H] = 0 and γ† = γ 
• When two vortices are exchanged, since the phase 

of charge-2e order parameter winds by 2π, electron 
picks up a phase π 

• Since Majoranas are superposition of electron creation and annihilation operators, 
we get γ1 → –γ2 and γ2 → γ1 

• Two vortices actually share two internal states labeled by iγ1γ2 = ±1 
• With 2N vortices the core states span a 2N-dimensional Hilbert space 
• The braiding of vortices leads to non-Abelian unitary transformations in this 

Hilbert space 
• Non-locality of the internal states of vortices ensures their coupling to the 

environment to be exponentially small ⇒ fault-tolerant quantum computation at 
the hardware level 

• Natural p+ip  Sr2RuO4; many properties of this system remain unclear 
• Artificial p+ip: proximity effect on (i) surface of 3D TI (ii) TRS breaking 2D TI 

(iii) semiconductors with strong Rashba SOC 



V. Topological Superconductors and Superfluids 
Majorana zero modes in topological superconductors C. 

Majorana fermions in surface states of the topological insulator 2. 
• Fu and Kane proposed MZM in superconducting vortex using surface states of a 

3D topological insulator 
• Consider (say) the surface of Bi2Se3  

with 

• Considering proximity to an s-wave superconductor we add 
• The BdG Hamiltonian is given by where 

• With a finite μ and a TRS breaking mass term         we can write 
with 
“nonrelativistic approximation” 
to the massive Dirac Hamiltonian 

where       is the positive energy branch of the surface states; in momentum space 
with and 



V. Topological Superconductors and Superfluids 
Majorana zero modes in topological superconductors C. 

Majorana fermions in surface states of the topological insulator 2. 

with 
where       is the positive energy branch of the surface states; in momentum space 

with and 

• Nonrelativistic approximation 

• The projection of the pairing term       onto the       band we get 

Precisely the 
Hamiltonian for a 
p+ip superconductor 

• As we tune m → 0, we can still tune μ → 0 while satisfying 
and keeping superconducting gap finite; i.e. MZM still exists with TRS and μ = 0  

• Lower dimensional analogue of this system  pairing on the edges of QSHE 
• MZM appears on the domain wall between s-wave superconductor and 

ferromagnetic insulator on the QSHE edge 



V. Topological Superconductors and Superfluids 
Majorana zero modes in topological superconductors C. 

Majorana fermions in semiconductors with Rashba spin-orbit coupling 3. 
• 2D electron gas with Rashba SOC: system which is described by a Hamiltonian 

very similar to the surface of a 3D TI 

• When s-wave pairing is introduced, each of the two 
spin-split Fermi surfaces forms a nontrivial 
superconductor 

• The Majoranas from these two Fermi surfaces 
annihilate each other so that the s-wave 
superconductor in the Rashba system is trivial 

• Breaking TRS opens a gap at k = 0; if chemical 
potential lies in the gap only one Fermi surface exists 

• Alternative to Ferromagnetic (FM) insulator: in-
plane magnetic field + Dresselhaus SOC 

• Similar scheme possible in 1D: semiconductor 
nanowires with Rashba SOC 

• Non-Abelian statistics still possible in 1D nanowire 
“T junctions”  



V. Topological Superconductors and Superfluids 
Majorana zero modes in topological superconductors C. 

Majorana fermions in quantum Hall and quantum anomalous Hall 
insulators 

4. 

• A proposal based on proximity effect to a 2D QH or QAH insulator 
• Consider a QH insulator with Hall conductance Ne2/h in close proximity to a 

superconductor 
• For infinitesimally small pairing we get chiral TSC with invariant 𝒩𝒩 = 2N 
• The edge state Hamiltonian, in terms of creation/annihilation operators for a 

complex spinless fermion, of a QH state with Chern number N = 1 is described 
by 

• Split into Majorana operators                  and 

where and 

• QH plateau transition from N = 1 to N = 0 will generically split into two 
transitions when superconducting pairing is introduced 

• However, large external magnetic field suppresses superconductivity 
• Can induce superconductivity in QAHE in Mn-doped HgTe QWs, and Cr- or Fe-

doped  Bi2Se3 thin films 



V. Topological Superconductors and Superfluids 
Majorana zero modes in topological superconductors C. 

Detection of Majorana fermions 5. 
• Consider the geometry shown in the figure to 

the right 
• An incident electron, with E = 0, splits into 

two chiral Majoranas at point “a,” with each 
Majorana following a path “b” and “c,” and 
recombining at point “d” 

• Say the ring encloses a flux Φ = nhc/2e 
• For odd (even) n we get a (an) hole (electron) 

at point “d” 
• Other proposals 

• Charging energy effects in mesoscopic 
superconductors 

• Doubled period of the Josephson 
tunneling current as a function of flux (i.e. 
Fraunhofer patten) in 1D and 2D junctions 
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