
3. Second Chern number and its physical consequences
B. TRI topological insulators based on lattice Dirac models

• The continuum Dirac model in (4+1)-d dimensions is expressed as

• Note: the above model bears superficial resemblance to (3+1)-d relativistic Dirac model. Here we don’t need a “5-vector” 
since we don’t require Lorentz invariance. The gamma matrices satisfy the Clifford algebra

• The lattice (tight-binding) version of this model is written as

• To get the k-space we do the same old Wannier to Bloch transformation defined by
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• To get the k-space we do the same old Wannier to Bloch transformation defined by

• The sum over i can be evaluated as

• Diagonalized Hamiltonian in k-space
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• Diagonalized Hamiltonian in k-space

• This Hamiltonian can be written in the compact form

• The second Chern number can be written as

• In terms of the compact Hamiltonian we get

• The critical values of m can be found as solutions to

• The function P[k] is a set of all the wavevectors obtained from index permutations of 
wavevector k. For example:

• The second Chern number C2 for the different regions in parameter space, separated by critical values of m, can be 
evaluated approximately near the critical points to give:



• On a hyper-cylinder we can define:

4. Dimensional reduction to (3+1)-d TRI insulators
A. Effective action of (3+1)-d insulators

• Hamiltonian of Dirac model coupled to an external U(1) gauge field

• Consider a special “Landau”-gauge configuration satisfying:
• We have translational invariance in the w-direction; kw is a good quantum number. Hamiltonian can be rewritten as:

• Since different kw are decoupled we obtain the (3+1)-d model:

• To study the response properties of the (3+1)-d system, the effective action can be defined as:

• We can Taylor expand around the field configuration:

• The coefficient G3(θ0) is determined by the below Feynman diagram
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• Copying coefficient G3(θ0) from last slide

• If we define the 4-D Berry connection can be defined as:
• Then we can show that the above expression for G3(θ0), in terms of Green functions, reduces to:

• The equivalence of these two forms can be proved in three steps:
• Derive an expression h(k, t) showing adiabatic connection between the 

expression for arbitrary h(k) and maximally degenerate h0(k)
• Explicit evaluation of G3(θ0) using Green functions for h0(k)
• Topological invariance of G3(θ0) under adiabatic deformations of h(k)

• Step I: Adiabatic connection of h(k) to h0(k)
• Any single particle Hamiltonian h(k) can be diagonalized as

where and
• With zero chemical potential, for an insulator with M full bands, the eigenvalues satisfy

• For t ߳ [0,1] we can define the interpolation

and
• Then we get

• We obtain an adiabatic interpolation between
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• Step II: Explicit evaluation of G3(θ0) using Green’s function for h0(k)
• The expression for h0(k) from step I:

• Properties of “projection” operators PG(k) and PE(k):

• The Green’s function for h0(k):

• Consider the maximally degenerate or flat-band Hamiltonian 
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• Using the Green’s function we can write
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• Step II: Explicit evaluation of G3(θ0) using Green’s function for h0(k)
• Properties of “projection” operators PG(k) and PE(k):

• The Green’s function for h0(k):

• Recall the expression for G3(θ0)

• Recall C2 as well

• Plugging in the above expressions for the Green’s functions we get

where P1/2(k) = PG/E(k)

• Now, introduce the non-Abelian Chern-Simons term

• Analogy to the charge polarization defined as the integral of the adiabatic connection 1-form over a path in 
momentum space



• The Hall conductance carried by a Dirac fermion is well-
defined only when the fermion mass is non-vanishing, so 
that a gap is opened

• If the surface (initially) has 2n+1 Dirac cones. Breaking 
time-reversal symmetry on the surface gives the following 
Hall conductance from each Dirac cone

• We can explicitly see this in the model:
• Then the Dirac Hamiltonian looks like:

4. Dimensional reduction to (3+1)-d TRI insulators
D. Physical properties of Z2-nontrivial insulators

• The non-trivial insulator has a magnetoelectric polarization P3 = 1/2 mod 1; the effective action of the bulk system should be

where n = P3 – 1/2 ϵ Ժ. S3D is quantized (and independent of P3) for compact space-time; hence P3 is unphysical
• For open boundaries consider semi-infinite nontrivial insulator occupying the space z ≤ 0; the rest (z > 0) is vacuum
• Effective action for all of Թ3 as

• Since P3 = 1/2 mod 1 for z < 0 and P3 = 0 mod 1 for z > 0, we have
• The domain wall of P3 carries a quantum Hall effect
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• Recall Dirac Hamiltonian from last slide

• Under a time-reversal transformation, Γ0 is even and Γ1,2,3,4 are odd; in other words only H0 respects time-reversal symmetry
• Recall second Chern number for this model

• For θ = π and -4c < m < -2c we have C2 = 1. It can be shown that for θ = 0, the region -4c < m < -2c is adiabatically connected 
to m → -∞ such that C2 = 0.

• It can be noted that {Γ4,H0} = 0 in the bulk and on the surface
• The surface Hamiltonian of H0 can be written as
• Since the only thing that anticommutes with this above surface Hamiltonian, the surface Hamiltonian for H = H0 + H1 is

• In summary, the effect of a time-reversal symmetry breaking term on the surface is to assign a mass to the Dirac fermions 
which determines the winding direction of P3 through the domain wall

• An analogous Chern number, that can evaluate the winding, can be defined as g[M(x)], where M(x) is the T-breaking field. 
The surface action, in terms of g[M(x)], can be written as 
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• Consider a ferromagnet-topological insulator heterostructure
• The pointing of the magnetization is given by
• For the first (parallel) case
• For the second (antiparallel) case
• Then for
• Using this expression the currents on the top and bottom surfaces can 

be determined and are indicated for the two cases by (horizontal) blue 
arrows

• The antiparallel magnetization leads to a vanishing net Hall 
conductance, while the parallel magnetization leads to σH = e2/h

• A top-down view of the device, to measure this quantum Hall effect, 
can be seen in the bottom left figure

• For the case of parallel magnetization, the trapping of the chiral edge 
states on the side surfaces of the topological insulator can be seen in 
the 3D view in the bottom right figure; these carry the quantized Hall 
current.

1. Magnetization-induced QH effect
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• Recall, in a T-breaking field M(x), the surface Chern-Simons action:
• Note: Although the Hall conductance of the two surfaces are the same in 

the global x, y, z basis, they are opposite in the local basis defined with 
respect to the normal vector

• This corresponds to g[M(x)] + 1/2 = ±1/2 for the top and bottom surfaces respectively.
• Drawing closer analogy to the integer quantum Hall effect (IQHE), we could alternatively say g[M(x)] = 0 (-1) for the top 

(bottom) surface; i.e. there exists a domain wall between two adjacent plateaux of  IQHE
• Such a domain wall will trap a chiral Fermi liquid which is responsible for the net Hall effect
• Note: in general there will also be other non-chiral states on this side surface; they are irrelevant since only one chiral edge 

state is protected
• Conditions for observing this type of quantum Hall: (i) kBT ≪ EM (magnetization-induced bulk gap),  (ii) chemical potential 

lies in the bulk gap
• Question: is this special type of quantum Hall a topological phase or symmetry-protected topological phase?
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• It is the rotation of polarization of light by a certain angle β = Bࣰd
• We can tune polarization by tuning the applied magnetic field
• Perhaps the same can be accomplished with external electric fields by 

exploiting TME in a medium with nonzero θ
• Electric fields are, in general, easier to generate than magnetic fields
• Recall that the total action of the electromagnetic field including the 

topological term is given by

3. Low-frequency Faraday rotation

• However, the effective theory only applies in the low-energy limit E ≪ Eg, where Eg is the 
gap of the surface state

• Assuming a FM-TI interface at z = 0, normally incident, linearly-polarized light in either 
region can be written as (primed variables belong to the TI):

• The ΔP3 terms in the action contribute unconventional boundary conditions at z = 0 given by (a = ax + iay, etc.) 

• Solving the above equations simultaneously we get: 

• By simple algebra the polarization plane rotated by an angle is given by 

• For typical values of Eg = 10 meV (and ϵ, μ ~ 1 and Δ = 1/2) we get EM frequency ≪ 2.4 THz, which is in the far infrared or 
microwave region

• In principle, it is possible to find a topological insulator with a larger gap which can support an accurate measurement of 
Faraday rotation


