3. Second Chern number and its physical consequences
B. TRI topological insulators based on lattice Dirac models

*  The continuum Dirac model in (4+1)-d dimensions is expressed as
1= [aix [WG0r (=i07) w(x) + mu ()T ()]

* Note: the above model bears superficial resemblance to (3+1)-d relativistic Dirac model. Here we don’t need a “5-vector”
since we don’t require Lorentz invariance. The gamma matrices satisfy the Clifford algebra {I"*, T} = 26,1
*  The lattice (tight-binding) version of this model is written as
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3. Second Chern number and its physical consequences

B. TRI topological insulators based on lattice Dirac models
To get the k-space we do the same old Wannier to Bloch transformation defined by ¥y = Z e_ik'n?/Jk
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The sum over i can be evaluated as Z e L he =2 Z cos(ki, )
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Diagonalized Hamiltonian in k-space

H= Zzpli [Z sin(k;, ) T™ + (m + CZ cos(k¢0)> FO] (O




3. Second Chern number and its physical consequences
B. TRI topological insulators based on lattice Dirac models

*  Diagonalized Hamiltonian in K-space
H = Z %T{ Z sin(k;, )T + (m + CZ cos(k¢0)> F0] Uy
k Z‘0 ’io
e This Hamiltonian can be written in the compact form
H = Z Yo ()T = Z Whgve = b)) =S d,0r = d(k) - T d(k) =

e The second Chern number can be written as
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*  Interms of the compact Hamiltonian we get R .
3 9dy(k) 9d (k) 9dg(k) Od.(k) (—4
C, = d4k abcded k C,
27 82 / %) Ok, Ok. Ok, —9¢,

»  The critical values of m can be found as solutions to Z d(k,m)=0 = m=¢ 0, k €
k €

a 2c,
¢ The function P[K] is a set of all the wavevectors obtained from index permutations of ~ { 4c
wavevector K. For example:

P[(r,0,0,0)] = {(r,0,0,0), (0,7,0,0), (0,0,7,0), (0,0,0,7)}
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*  The second Chern number C, for the different regions in parameter space, separated by critical values of m, can be

evaluated approximately near the critical points to give:

(0, m < —4c
1, —dec<m< —2c
-3, —2c<m<0
Cm) =90 37 0 <m<2e
-1, 2c<m<A4c
. 0 m > 4c




4. Dimensional reduction to (3+1)-d TRI insulators

A. Effective action of (3+1)-d insulators

*  Hamiltonian of Dirac model coupled to an external U(1) gauge field

Y —airt\
R T ¢ 'LAn,n i . T 0
H[A] = Z l% ( 5 ) eiAnntig)y o1 h.c.} +m > iM%y
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*  Consider a special “Landau”-gauge configuration satisfying: Ap nyi = Antw.ntwti
*  We have translational invariance in the w-direction; k,, is a good quantum number. Hamiltonian can be rewritten as:
, Y — s\ .

H[Al = ) { " (T) eimreqp Lo+ h.c} + > ¢l [sin (b + Axa) T+ (m 4 ccos (kw + Axa)) T Y,

Ko X,8 Ko X,8

n=(z,y,z,w), i=%y,2w, Au = Axxiw, XxX= (,9,2),8 =X, ¥, 2
*  On a hyper-cylinder we can define: 6, = ky, + Ay
*  Since different £, are decoupled we obtain the (3+1)-d model:

HjplA, 0] = Z {@DL (%) it o+ h.c.} +Z Wl [sin(6x)T* + (m + ccos(6x)) T°] ¢«

*  To study the response properties of the (3+1)-d system, the effective action can be defined as:
exp(iSan[4.6]) = [ DIw|D[F]exp ( JE [Z T (i0: — Asg) tx — H[A, 6] ) .
*  We can Taylor expand around the field conﬁgurationTAS(x, t)=0, 6(x,t) =6
Ssp = M / d*x dt €"°750(x, 1) 0, A, 0, A, d0(x,t) = 0(x,t) — by

4
*  The coefficient G5(6,) 1s determined by the below Feynman diagram
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4. Dimensional reduction to (3+1)-d TRI insulators

A. Effective action of (3+1)-d insulators

*  Copying coefficient G;(6,) from last slide

3k d oGt oG oG oG—! oG
s =5 [ T4 [(5) (6%5) (657 ) (%) (45|}
S 6J) (2m) dq" q” dq° oq" ol
e If we define the 4-D Berry connection can be defined as: f;;.ﬁ = &;a?ﬁ — @a?ﬁ + 1 [a;, aj]aﬂ ky = (ky, ky, k=, 00)
*  Then we can show that the above expression for G5(6,), in terms of Green functions, reduces to:

1 E
Galtn) = gz [ Pk e (fy) -
i €
*  The equivalence of these two forms can be proved in three steps: B
*  Derive an expression A(k, ) showing adiabatic connection between the i

expression for arbitrary 4(K) and maximally degenerate iy(k) | /AN -l
*  Explicit evaluation of G5(6,) using Green functions for /,(K) et izzzzEss®
»  Topological invariance of G;(6,) under adiabatic deformations of A(K) _
»  Step I: Adiabatic connection of A(K) to /,(K)
*  Any single particle Hamiltonian /(K) can be diagonalized as h(k) = U(k)D(k)U" (k)
where U(k) = (|1,k), |2,k), ..., |N,k))and D(k) = diag [e;(k), e2(k), ..., en (k)]
*  With zero chemical potential, for an insulator with M full bands, the eigenvalues satisty
61(1{) < 62(k> <. < 6]\/[(1{) <0< E]\/j+1(k) <. < EN(k).

* Forte[0,1] we can define the interpolation
B, (k.t) = { eak)(1—t)+ect, 1<a<M
v ca(k)(1—t)+ept, M<a<N

and Dy(k, t) = diag [E1(k, 1), Es(k, 1), ..., Ex(k, t)]

e Then we get I J

Dyfk.0) = D, Dyfk1) = (O

— Flat Band Model

Generic Insulator

epln_nmxN— M)
*  We obtain an adlabatlc interpolation between h(k,0) = h(k) and h(k, 1) = U(k)Dy(k, 1)U (k) = ho(k)

ho(K) EGka (a, k| + €ep Z 18, k) (B, k| = e Po(k) + epPp(k)

a=1 B=M+1



4. Dimensional reduction to (3+1)-d TRI insulators

A. Effective action of (3+1)-d insulators

Step 11: Explicit evaluation of G;(6,)) using Green’s function for /,(k)
*  The expression for 4y(K) from step I:

M N
ho(k) = ec > | k) (. k| +ep > 18,K) (3. k| = egP(k) + epPp(k)
a=1 B=M+1
*  Properties of “projection” operators P(K) and P (K):
P% = Pg, P = Py, PePg = PgPp=0
*  The Green’s function for /,(K):
1
Glkw) = — 5= caPe(k) — epPp(k)

1= (w + 10 — Egpg(k) — GEPE(k)) (ClpG(k) + CQPE(k))
= ((w +10) (1 Pa(k) 4+ coPp(k)) —

((w+1id) (c1Pa(k) + coPr(k)) —

1 (w—l—z’é—eg) (k>+CQ (w+’i5—€E)PE(k)
Po(k) =1 (w16 — eq) Pa(k)+co (w+1id — eg) Pr(k)Ps(k)
Pg(k) =C (w + 10 — Eg) Pg(k)

B 1 1
a= w+10 — €q

= Clpg(k) + CQPE<k)

Pq
P

Co = ——
w410 — €

e Consider the maximally degenerate or flat-band Hamiltonian
ho(k) = GGpg(k> + EEPE(k)

M M
P => "o k) (o, k| Y| k) (o K|
a=1 a’'=1

M M

=> ) | k) (o, k|, k) (/K]
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M M
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= la,k) (o k| = P
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(Clﬁgpé«(k) + CQEGpg(k)PE(k)) — (CleEPE(k)Pg(k) + CQGEP]%(k)))
(c1eaPs(k) +0) — (0 + c2epPr(k)))

E

o (k) op (k) op (k) op (k) 2P (k> Generic Insulator Flat Band Model
olk) G e(K) alk) E
ok O o, ok T o T T g,
*  Using the Green’s function we can write
oG (k,w) B oG (k,w) L 0Pq(k) B 0Pgp(k) ~(ep— )an(k)
oo ok, ok, ok, P4 o,




4. Dimensional reduction to (3+1)-d TRI insulators

A. Effective action of (3+1)-d insulators
Step 11: Explicit evaluation of G;(6,)) using Green’s function for /,(k)

Properties of “projection” operators P;(K) and Py(K):
P =Pg, Pi=Pp, PP = PePp=0
The Green’s functio(n gor hy(K): ) 1( ) 1( )
Pq(k Pr(k oG~ (k,w oG~ (k,w
G k — - N\ ]_ - ) € — €
(k) w+i5—e(;+w-|—i6—eE = Ow ’ Ok; (¢p = €a)
Recall the expression for G;(6,)

o =5 [ e (655 ) (%) (57 (%) (%))

Cy = /G3(90>d00

OP(k)
ok;

Recall C, as well
2 4 -1 -1 -1 -1 -1
_ _7T_ UVpoT d*k dWT oG oG oG oG 0G
Cy 15€ / (27)5 r| (G a0 G a0 G 90 G o G e

Plugging in the above expressions for the Green’s functions we get

% % 0Pg OPq _ 4
7-‘-2 ij‘f/ d4k dw Z Tr [Pn Ok; Pm 81€j Ps Ok Pt_@kgi| (EE EG)

Cy=——¢ 5 ) 2 ) ) .
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n,m,s,t=1,2

where P, ,(K) = Pg(K)
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/ d'k €M Tr [ fi; frl
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Now, introduce the non-Abelian Chern-Simons term 4 = #EABCDTI l( fpe — % as, CLC]) .a D]

Analogy to the charge polarization defined as the integral of the adiabatic connection 1-form over a path in

momentum space 1 5 bik 1
P3(60) = 16,2 d’k """ Tr fij - g [Cli, Clj] - Ay




4. Dimensional reduction to (3+1)-d TRI insulators

D. Physical properties of Z,-nontrivial insulators

The non-trivial insulator has a magnetoelectric polarization Py = 1/2 mod 1; the effective action of the bulk system should be

o+ 1
Syp = T / Px dt 778, 4,0, A,

where n = Py —1/2 € Z. Sy, is quantized (and independent of P5) for compact space-time; hence P; is unphysical
For open boundaries consider semi-infinite nontrivial insulator occupying the space z < 0; the rest (z > 0) is vacuum
Effective action for all of R3 as

1
Ssp = o / d*x dt €7 A,0,P3 0, A,

Since P;=1/2mod 1 forz<0and P;=0mod 1 forz>0,we have 9.P, = [ n ! d(z

The domain wall of P, carries a quantum Hall effect

The Hall conductance carried by a Dirac fermion is well-
defined only when the fermion mass is non-vanishing, so
that a gap is opened 1
H = k0" + kyo” +mo” e 08
If the surface (initially) has 2n+1 Dirac cones. Breaking T 82
time-reversal symmetry on the surface gives the following '

0.2
Hall conductance from each Dirac cone 0
1 ) e? (m) -100 0
og = —sgn(m) | = —sgn(m
= 4r gn( 2h & z

We can explicitly see this in the model: §(x) = 0(z) = g 1 _ fanh(z/4§)]

Then the Dirac Hamiltonian looks like:

0_ .13
H = Z llﬂ};zky(z) (%) 1&]%/%(2’ + 1) + h.C.‘|
2k ky <—H,
-+ Z Mmy(z) [(m + ccos(0(z)) + ccos(ky) + ccos(ky)) + sin(k,) I + sin(ky ) T] ¢y, (2)
2,k ,ky

+> vl () sinw(z))r%ky(z)I\
H,

2,k key




4. Dimensional reduction to (3+1)-d TRI insulators

D. Physical properties of Z,-nontrivial insulators

Recall Dirac Hamiltonian from last slide

0 _ 3
H — Z lwlmky(z) (%) Vpor, (2 +1) + h.c.]

2,kg Ky @HO
-+ Z wlzmky(z) [(m + ccos(6(z)) + ccos(ky,) + ccos(ky)) + sin(k, )T + sin(k, )] Vi, k, (2)
2,k ,ky

+ ) i (2) Sin(Q(Z))Fkaky(Z)]\
H,y

2, ke key

Under a time-reversal transformation, I'? is even and I'!->3# are odd; in other words only H,, respects time-reversal symmetry
Recall second Chern number for this model

(0, m < —4c
1, —dc<m< —2c
-3, —2c<m<0
Cm) =3 37 gem<ae
-1, 2c<m<dc
(O m > 4c

For 0 = and -4c <m < -2c we have C, = 1. It can be shown that for 6 = 0, the region -4c <m < -2c is adiabatically connected
to m — -co such that C, = 0.

It can be noted that {I'*,H,} = 0 in the bulk and on the surface

The surface Hamiltonian of H, can be written as [ = k,0” + k0"

Since the only thing that anticommutes with this above surface Hamiltonian, the surface Hamiltonian for H = H, + H, is

H = k0" + kyo¥ +mo~

In summary, the effect of a time-reversal symmetry breaking term on the surface is to assign a mass to the Dirac fermions
which determines the winding direction of P, through the domain wall

An analogous Chern number, that can evaluate the winding, can be defined as g[M(X)], where M(X) is the T-breaking field.

The surface action, in terms of g[M(X)], can be written as

1 1
surf — - 1 M — AWOTAV UAT
St ym /av dn, (g[ (x)] + 2) € 0,



4. Dimensional reduction to (3+1)-d TRI insulators

D. Physical properties of Z,-nontrivial insulators EM I EM I
1. Magnetization-induced QH effect _
Consider a ferromagnet-topological insulator heterostructure
*  The pointing of the magnetization is given by M Tl ® E X ! Tl ® E X

*  For the first (parallel) case n;, = M n, = —M

*  For the second (antiparallel) casen; = M 1y, = M FM I FM l
e Thenfor E=E,%x j=MxE/4~n

*  Using this expression the currents on the top and bottom surfaces can

[
be determined and are indicated for the two cases by (horizontal) blue I I
arrows _
*  The antiparallel magnetization leads to a vanishing net Hall h '
conductance, while the parallel magnetization leads to oy, = €*/h FM-TI-F M

Y

* Atop-down view of the device, to measure this quantum Hall effect,
can be seen in the bottom left figure

*  For the case of parallel magnetization, the trapping of the chiral edge I I I
states on the side surfaces of the topological insulator can be seen in
the 3D view in the bottom right figure; these carry the quantized Hall
current. 1 1

* Recall, in a 7T-breaking field M(X), the surface Chern-Simons action: S,y = — / dn, (g [M(x)] + _) T A LD, A

*  Note: Although the Hall conductance of the two surfaces are the same in T Jov 2
the global x, y, z basis, they are opposite in the local basis defined with
respect to the normal vector

*  This corresponds to g[M(x)] + 1/2 = £1/2 for the top and bottom surfaces respectively.

*  Drawing closer analogy to the integer quantum Hall effect (IQHE), we could alternatively say g[M(X)] = 0 (-1) for the top
(bottom) surface; i.e. there exists a domain wall between two adjacent plateaux of IQHE

*  Such a domain wall will trap a chiral Fermi liquid which is responsible for the net Hall effect

* Note: in general there will also be other non-chiral states on this side surface; they are irrelevant since only one chiral edge
state is protected

»  Conditions for observing this type of quantum Hall: (i) k37 < E,, (magnetization-induced bulk gap), (ii) chemical potential
lies in the bulk gap

*  Question: is this special type of quantum Hall a topological phase or symmetry-protected topological phase?




4. Dimensional reduction to (3+1)-d TRI insulators

D. Physical properties of Z,-nontrivial insulators
3. Low-frequency Faraday rotation

It is the rotation of polarization of light by a certain angle = B4
We can tune polarization by tuning the applied magnetic field

Perhaps the same can be accomplished with external electric fields by T /

exploiting TME in a medium with nonzero 6 h [T

Electric fields are, in general, easier to generate than magnetic fields h

Recall that the total action of the electromagnetic field including the h.

topological term is given by T

Stot = /d3X dt |i é ,UZ/F/W + ;EWPIW - ij ‘A ] ]_6 /d3X dt P3 E'UVOTEJI/F(”— I EM

However, the effective theory only applies in the low-energy limit £ < E,, where E, is the

gap of the surface state 7 Buopo

Assuming a FM-TI interface at z = 0, normally incident, linearly-polarized light in either ]

region can be wrltten as (;)rlmed variables belong to the TI): T] . -

A t)_ kZWt+b€kzwt,Z>O 1T
(1) = cel(—Kz—wt) 2 <0

The AP, terms in the action contribute unconventional boundary conditions at z = 0 given by (& =a, + ia,, etc.)
a+b-c 20Aw

2x|k(—a+b)/u+kc/u]=— c
_ [ ( )/M_ ./u] . . W 2iadw)c
Solving the above equations simultaneously we get: a4 = 5 1+ K Cy

By simple algebra the polarization plane rotated by an angle is given by

2aA
Velut+ el

For typical values of E, = 10 meV (and €, u ~ 1 and A = 1/2) we get EM frequency « 2.4 THz, which is in the far infrared or
microwave region

In principle, it is possible to find a topological insulator with a larger gap which can support an accurate measurement of
Faraday rotation

Btopo = arctan



