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 Introduction 
 

 Majorana fermions in p-wave superconductors 
 Representation in terms of fermionic operators 
 Non-abelian statistics 
 Majorana qubits and topological quantum computation 

 

 Proximity-induced superconductivity in spin-orbit 
semiconductors 
 

 Induced p-wave-like gap in semiconductors 
 

 Conclusions and outlook 

Outline 



Kitaev 1-D Chain 
 Spinless p-wave superconductor 
 Tight-Binding Hamiltonian 

 
 

 Defining Majorana Operators 
 

 
 Anticommutation relations for Majorana Operators 
 Special case: “left” Majoranas on different sites 

 
 
 
 

 Majoranas on same site: 



Kitaev 1-D Chain 
 Hamiltonian in terms of Majorana Operators 
 Simple case 

 
 
 
 
 
 
 
 

 Recall anticommutation  



Kitaev 1-D Chain 
 Alternative pairing of Majorana fermions 
 Recall 1-D Majorana Hamiltonian 

 
 
 

 Define 
 
 
 
 
 
 

 Diagonalized Hamiltonian 
 



Role of pairing in Kitaev 1-D Chain 
 What is the nature of pairing? 
 Recall the tight-Binding Hamiltonian 

 
 

 Why is this a p-wave superconductor? 
 For the so-called s-, p-, d- or f-wave 

superconductor 
 Pairing in real space 
 How to visualize cooper pairs? 
 Lattice model for (conventional) s-wave 

 
 

 On-site particle number operator 
 This “bosonic blob” still at the same site 

 
 



Role of pairing in Kitaev 1-D Chain 
 Pairing in “conventional” superconductivity 
 Recall lattice model for conventional superconductor 

 
 

 Applying Wick’s theorem 
 
 

 The mean field Hamiltonian 
 
 

 Pairing in “unconventional” superconductivity 
 

On-site pairing 

Nearest-neighbor pairing 



Role of pairing in Kitaev 1-D Chain 
 Pairing in “unconventional” superconductivity 
 2-D lattice model mean field Hamiltonian (lattice constant = 1) 

 
 

 Diagonalize 
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Properties of Majorana Fermions 
 Are Majoranas “hard-core balls”? 
 Majorana “mode” is a superposition of electron and hole states 
 Is this like a bound state? e.g. exciton, hydrogen atom, positronium? 
 Can “count” them by putting them in bins? 
 Sure, define a number operator 
 Garbage! Okay, counting doesn’t make sense! 

 Regular fermion basis 
 We can count regular fermions 
 We can pair Majoranas into regular fermions and measure them 
 How to chose? Number of pairings: 

 
 Overlap between states 

 
 To observe the state of the system we need to “fuse” two Majoranas 

 
 
 

 
 



Properties of Majorana Fermions 
 Non-abelian statistics 
 A system of 2N well separated Majoranas has a 2N degenerate ground 

state. Think of N independent of 1-D Kitaev chains 
 Exchanging or “braiding” connects two different ground states 
 What is nonabelian about them? 
 

“if one performs sequential exchanges, the final state depends on the 
order in which they are carried out” 

 

 Consider the exchange of two Majoranas 
 

 
 



Properties of Majorana Fermions 
 Non-abelian statistics 
 Exchange of two Majoranas 

 
 
 
 

 Define “braiding” operator 
 

 
 



Properties of Majorana Fermions 
 Non-abelian statistics 
 Exchange of two Majoranas 

 
 
 
 

 Effect on number states 
 

 
 



 Define Pauli matrices for 
rotations on the Bloch sphere 
 
 
 
 

 Braiding as rotations 

Properties of Majorana Fermions 
 Non-abelian statistics 
 Exchange of four Majoranas 

 
 
 
 

 Effect on number states 
 

 
 



Ingredients for observing Majoranas? 
 Key ingredients 
 Mechanism for pairing of regular fermions 
 Spin degree of freedom must be suppressed 
 Additionally we need 
 p-wave pairing symmetry 
 Spin-triplet state 

 Tools that provide these ingredients 
 Pairing  in superconductors or proximity effect 
 Suppress spin  break time-reversal symmetry or polarize a band 

 Few important approaches/proposals 
 Engineer systems with strong spin-orbit coupling and superconductors 
 Induced triplet p-wave pairing in non-centrosymmetric 

superconductors 
 Discover Time Reversal Invariant topological superconductors! 

 
 
 
 
 

 
 



“Artificial” topological superconductors 
 “Spinless” p-wave superconductors 
 2nd quantized Hamiltonian 

 
 
 
 
 

 Pairing Hamiltonian: 
 
 

 Nambu spinor 
 
 

 s-wave singlet pairing inherited from superconductor: 
 
 
 
 

 
 



“Artificial” topological superconductors 
 “Spinless” p-wave superconductors 
 Recall 1st and 2nd quantized Hamiltonians 

 
 

 Define 
 
 

 Then total Hamiltonian is given by 
 
 
 
 

 
 

where 



“Artificial” topological superconductors 
 Obtaining Bogoliubov-de Gennes (BdG) equation 

 
 
 
 
 
 
 
 
 

 Compare 
 
 
 
 

 
 



“Artificial” topological superconductors 
 Artifacts of the BdG formalism?  
 Particle-hole symmetry 
 Action on operators 

 
 
 

 Relation between particle and hole eigenstates 
 

 Therefore, Majorana fermions 
 Structure of the Nambu spinor 

 
 
 
 
 

 
 



“Artificial” topological superconductors 

 “Spinless” p-wave superconductors 
 2nd quantized Hamiltonian 

 
 
 
 
 
 

 Assume on-site pairing 
 First consider 
 Block diagonal 2 × 2 Hamiltonians 

 
 
 
 
 
 
 

 
 

where 



“Artificial” topological superconductors 

 “Spinless” p-wave superconductors 
 Diagonalizing 2 × 2 matrices 

 
 
 
 
 
 
 

 
 Eigenvalues 



“Artificial” topological superconductors 

 “Spinless” p-wave superconductors 
 Recall eigenvalues 

 
 

 For no Zeeman field 
 
 



“Artificial” topological superconductors 

 “Spinless” p-wave superconductors 
 Now, slowly turn on the pairing 

 
 Total Hamiltonian becomes 

 
 
 
 

 Brute force diagonalization 
 
 
 

 The gap vanishes at 
 
 



“Artificial” topological superconductors 

 “Spinless” p-wave superconductors 
 The gap vanishes at 

 
 and 

 Consider the limit 
 
 

where 



Conclusions and Outlook 
 Overview 
 How to obtain Majorana fermions 
 Non-abelian statistics 
 Engineering/finding systems that host Majorana zero modes 

 Experimental progress 
 Kouwenhoven group first to see “zero bias conductance peak” 

(ZBCP) in InSb nanowires 
 Other groups confirmed existence of ZBCP with different 

experimental parameters 
 Experimental to-do’s 
 Verify non-abelian statistics 
 Test more platforms for hosting Majorana fermions 
 Accomplish reliable quantum computation 
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