The Quantum Spin Hall Effect

Tejas Deshpande

Caltech

January 13, 2013

Tejas Deshpande (Caltech)

The Quantum Spin Hall Effect

January 13, 2013

æ

1 / 38

・ロト ・日ト ・ヨト ・ヨト

Outline

1 Introduction

- 2 Phenomenology of the Quantum Spin Hall Effect
- The Quantum Spin Hall Effect in HgTe Quantum Wells
- 4 Experiments on HgTe Quantum Wells
- 5 Theory of the Helical Edge State
- **(6)** Topological Insulators in Three Dimensions
- **7** Conclusion and Outlook

- 2

イロト イヨト イヨト イヨト

Classification of Phases of Matter

• Ginzburg-Landau Theory of Phase Transitions

- Classify phases based on which symmetries they break
- More rigorous definition of "symmetry breaking": ground state does not possess symmetries of the Hamiltonian
- Ordered phase characterized by **local** order parameter
- Phases Defined by Symmetry Breaking
 - Rotational and Translational: Crystalline Solids (continuous to discrete)
 - Spin Rotation Symmetry: Ferromagnets and Antiferromagnets

• Counter examples

- Integer and Fractional Quantum Hall Effects
- Certain Spin Liquids

• Topological Phases of Quantum Matter

- Topological phases characterized by an invariant quantity: TKNN number or Chern number
- Chern number is equal to the number of **stable** gapless edge states

"Topological Protection" of Edge States

• What is "Topological" about this new Quantum Phase?

- The bulk topology is responsible for *fractionalization* on the edge
- Degrees of freedom of the electron states are **not** localized
- Failure to define local order parameter makes sense

• Example: The Integer Quantum Hall (QH) Effect

- Area of closed orbits in the bulk becomes quantized, bulk electrons become localized, and the bulk turns into an insulator
- The skipping edge orbits form extended one-dimensional channels with a quantized conductance of e^2/h per channel
- Different values of the Hall conductance σ_{xy} are distinct phases of matter
- Different σ_{xy} cannot be adiabatically connected to each other without closing a spectral gap

イロト イヨト イヨト イヨト

The Quantum Spin Hall Effect (QSHE)

• Conceptual analogy between the quantum Hall and quantum spin Hall effects

• Transverse spin conductance

$$\sigma_{xy}^{\rm spin} = \nu \left(\frac{2e^2}{h}\right) \qquad \nu = 0, 1$$

Bandstructure of CdTe

• s-like (conduction) band Γ_6 and p-like (valence) bands Γ_7 and Γ_8 with (right) and without (left) turning on spin-orbit interaction

- With spin-orbit interaction Γ_8 splits into the Light Hole (LH) and Heavy Hole (HH) bands away from the Γ point
- The split-off band Γ_7 shifts downward

Tejas Deshpande (Caltech)

The Quantum Spin Hall Effect

January 13, 2013 6 / 38

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Bandstructure of HgTe

• s-like (conduction) band Γ_6 and p-like (valence) bands Γ_7 and Γ_8 with (right) and without (left) turning on spin-orbit interaction

The Γ₈ splits into LH and HH like CdTe except the LH band is inverted
The ordering of LH band in Γ₈ and Γ₆ bands are switched

Tejas Deshpande (Caltech)

・ロト ・回ト ・ヨト ・ヨト

Quantum Well Fabrication

- Molecular Beam Epitaxy (MBE) grown HgTe/CdTe quantum well structure
- Confinement in (say) the z-direction

- $L = 600 \ \mu \text{m}$ and $W = 200 \ \mu \text{m}$
- Gate voltage V_G used to tune the Fermi level in HgTe quantum well

Topological Phase Transition

 $\bullet\,$ For $d_{QW}>d_c$ the HgTe layer becomes quantum spin Hall insulator

- The E_1 and H_1 subbands switch to *inverted* ordering for $d_{QW} > d_c$ just like in bulk HgTe
- Quantum confinement does **not** help create a topologically nontrivial phase
- Why not just use bulk HgTe then?
- There is **no gap** in (unstrained) bulk HgTe!

9 / 38

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Bernevig-Hughes-Zhang Model

- Construction of a simple 2D lattice model
 - Define a new basis from two spaces: **orbital** (τ_i) and **spin** (σ_i) with i = 0, 1, 2, 3

$$|\psi\rangle = \left(|E_1, +\frac{1}{2}\rangle |E_1, -\frac{1}{2}\rangle |H_1, +\frac{1}{2}\rangle |H_1, -\frac{1}{2}\rangle \right)^T$$

 $\bullet\,$ Must respect symmetries of the system: time-reversal and inversion

$$\hat{\Theta} = i\tau_0 \otimes \sigma_y \mathcal{K} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \mathcal{K}, \ \hat{\mathcal{P}} = \tau_0 \otimes \sigma_y = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

• Representation of *arbitrary* 4×4 Hamiltonian matrix

$$\begin{aligned} \mathcal{H}(\mathbf{k}) &= \varepsilon(\mathbf{k})\mathbb{I}_{4\times4} + \sum_{i=0}^{4} d_i(\mathbf{k})\Gamma_i + \sum_{i< j=0}^{4} d_{ij}(\mathbf{k})\Gamma_{ij} & i, j = 0, 1, 2, 3, 4 \\ \{\Gamma_i, \Gamma_j\} &= 2\delta_{ij}\mathbb{I}_{4\times4} \\ \Gamma_{ij} &= \frac{1}{2i}\left[\Gamma_i, \Gamma_j\right] & \text{ for all } i \in \mathbb{C}$$

The Bernevig-Hughes-Zhang Model

• Definition of Γ_i 's $(4 \times 4 - 1 = 15 \text{ choices!})$

 $\{\Gamma_0, \Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4\} \equiv \{\tau_z \otimes \sigma_0, -\tau_x \otimes \sigma_x, -\tau_x \otimes \sigma_y, -\tau_x \otimes \sigma_z, \tau_y \otimes \sigma_0\}$

• Check symmetries of the $\{\Gamma_i\}$

	Γ_0	Γ_1	Γ_2	Γ_3	Γ_4
Ô	+	_	—	_	_
$\hat{\mathcal{P}}$	+	—	—	_	_
$\hat{\Theta}\hat{\mathcal{P}}$	+	+	+	+	+

• Rotation of π about x, y, and z-axis

	Γ_0	Γ_1	Γ_2	Γ_3	Γ_4
$\hat{\mathcal{R}}_x(\pi)$	+	+	_	_	+
$\hat{\mathcal{R}}_y(\pi)$	+	—	+	—	+
$\hat{\mathcal{R}}_z(\pi)$	+	—		+	+

Model Hamiltonian

• The Hamiltonian on a simple-cubic lattice

$$\mathcal{H}(\mathbf{k}) = \varepsilon(\mathbf{k})\mathbb{I}_{4\times 4} + M\Gamma_0 + \sum_{i=1}^3 \left(\alpha\cos\left(k_i a\right)\Gamma_0 + \beta\sin\left(k_i a\right)\Gamma_i\right)$$

• In 2-D HgTe quantum wells (fix k_z)

$$\mathcal{H}(\mathbf{k}) = \varepsilon(\mathbf{k})\mathbb{I}_{4\times4} + (M - 2B)\Gamma_0 - 2B\cos(k_x a)\Gamma_0$$
$$-2B\cos(k_y a)\Gamma_0 + A\sin(k_x a)\Gamma_1 + A\sin(k_y a)\Gamma_2$$

• Ignore
$$\varepsilon(\mathbf{k})$$
, setting $a = 1$, and defining
 $\mathcal{M}(\mathbf{k}) = M - 2B \left(2 - \cos\left(k_x\right) - \cos\left(k_y\right)\right)$
 $\mathcal{H}(\mathbf{k}) = \mathcal{M}(\mathbf{k})\Gamma_0 + A\sin\left(k_x\right)\Gamma_1 + A\sin\left(k_y\right)\Gamma_2$

 \bullet Full Hamiltonian (already diagonal in ${\bf k})$

$$\mathcal{H} = \sum_{\mathbf{k}} \left(\mathcal{M}(\mathbf{k}) \Gamma_0 + A \sin(k_x) \Gamma_1 + A \sin(k_y) \Gamma_2 \right)$$

Tejas Deshpande (Caltech)

12 / 38

Solution of Bulk States

• Neat trick to diagonalize

$$\begin{aligned} \mathcal{H}^{2}(\mathbf{k}) &= \mathcal{M}^{2}(\mathbf{k})\Gamma_{0}^{2} + A^{2}\sin^{2}\left(k_{x}\right)\Gamma_{1}^{2} + A^{2}\sin^{2}\left(k_{y}\right)\Gamma_{2}^{2} \\ &+ A\sin\left(k_{x}\right)\mathcal{M}(\mathbf{k})\left\{\Gamma_{0},\Gamma_{1}\right\} \\ &+ A\sin\left(k_{y}\right)\mathcal{M}(\mathbf{k})\left\{\Gamma_{0},\Gamma_{2}\right\} \\ &+ A^{2}\sin\left(k_{x}\right)\sin\left(k_{y}\right)\left\{\Gamma_{1},\Gamma_{2}\right\} \end{aligned}$$

• Recall commutation relations

$$\{\Gamma_i, \Gamma_j\} = 2\delta_{ij}\mathbb{I}_{4\times 4} \tag{2}$$

• Using (2) in (1) we get

$$\mathcal{H}^{2}(\mathbf{k}) = \left(\mathcal{M}^{2}(\mathbf{k}) + A^{2} \sin^{2}\left(k_{x}\right) + A^{2} \sin^{2}\left(k_{y}\right)\right) \mathbb{I}_{4 \times 4}$$

$$E_{\pm}(\mathbf{k}) = \pm \sqrt{\mathcal{M}^{2}(\mathbf{k}) + A^{2} \sin^{2}\left(k_{x}\right) + A^{2} \sin^{2}\left(k_{y}\right)}$$

イロト イヨト イヨト イヨト

13 / 38

æ

(1)

 $\bullet\,$ Finite thickness in the y-direction

$$c_{\mathbf{k}} \equiv c_{k_x,k_y} = \frac{1}{L} \sum_{j} e^{ik_y j} c_{k_x,j}$$

$$\mathcal{H} = \sum_{\mathbf{k}} \left(A \sin(k_x) \Gamma^1 + A \sin(k_y) \Gamma^2 + \left(M - 2B \left(2 - \cos(k_x) - \cos(k_y) \right) \right) \Gamma^5 \right) c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}}$$

$$\begin{aligned} \mathcal{H} &= \frac{1}{L} \sum_{k_x} \sum_j \left[A \sin(k_x) \Gamma^1 + (M - 4B + 2B \cos(k_x)) \Gamma^5 \right] c^{\dagger}_{k_x,j} c_{k_x,j} \\ &+ \frac{1}{L} \sum_{k_x} \sum_j \left(-\frac{iA}{2} \Gamma^2 + B \Gamma^5 \right) c^{\dagger}_{k_x,j+1} c_{k_x,j} \\ &+ \frac{1}{L} \sum_{k_x} \sum_j \left(\frac{iA}{2} \Gamma^2 + B \Gamma^5 \right) c^{\dagger}_{k_x,j-1} c_{k_x,j} \end{aligned}$$

Tejas Deshpande (Caltech)

The Quantum Spin Hall Effect

January 13, 2013

14 / 38

• Dropping the subscript we can simply set $k \equiv k_x$

$$\begin{aligned} \mathcal{H} &= \frac{1}{L} \sum_{k,j} \left(\mathcal{M}(k) c_{k,j}^{\dagger} c_{k,j} + \mathcal{T} c_{k,j}^{\dagger} c_{k,j+1} + \mathcal{T}^{\dagger} c_{k,j+1}^{\dagger} c_{k,j} \right) \\ &\equiv \sum_{k,k'} \mathcal{H}(k) \delta_{k,k'} \end{aligned}$$

• The Schrodinger equation can be written as

$$\mathcal{H}|\psi\rangle = E|\psi\rangle$$

• Since $\mathcal{H}(k)\delta_{k,k'}$ is already diagonal, we get a set of *decoupled* Schrödinger equations in k

$$\mathcal{H}(k)|\psi(k)\rangle = E(k)|\psi(k)\rangle$$

 $|\psi\rangle = \bigotimes_k |\psi(k)\rangle, \qquad \qquad E = \sum_k E(k)$

$$|\psi(k)\rangle = \sum_{j}\psi(k,j)c_{j}^{\dagger}|0\rangle$$

Tejas Deshpande (Caltech)

The Quantum Spin Hall Effect

January 13, 2013 15 / 38

• Schrodinger equation

$$\mathcal{H}(k)|\psi(k)\rangle = E(k)|\psi(k)\rangle, \qquad |\psi(k)\rangle = \sum_{j}\psi(k,j)c_{j}^{\dagger}|0\rangle$$

• Use the following ansatz $(\lambda \in \mathbb{C})$

$$\psi(k,j) = \lambda^{-j} \phi(k)$$

• Plugging in the ansatz into the Schrodinger equation

$$\begin{aligned} \langle \psi(k) | \mathcal{H}(k) | \psi(k) \rangle &= \sum_{j,\ell',\ell} \phi^{\dagger}(k) \mathcal{M}(k) \phi(k) \lambda^{\ell'-\ell} \langle 0 | c_{\ell'} c_{k,j}^{\dagger} c_{k,j} c_{k,j} c_{\ell}^{\dagger} | 0 \rangle \\ &+ \sum_{j,\ell',\ell} \phi^{\dagger}(k) \mathcal{T} \phi(k) \lambda^{\ell'-\ell} \langle 0 | c_{\ell'} c_{k,j}^{\dagger} c_{k,j+1} c_{\ell}^{\dagger} | 0 \rangle \\ &+ \sum_{j,\ell',\ell} \phi^{\dagger}(k) \mathcal{T}^{\dagger} \phi(k) \lambda^{\ell'-\ell} \langle 0 | c_{\ell'} c_{k,j+1}^{\dagger} c_{k,j} c_{\ell}^{\dagger} | 0 \rangle \end{aligned}$$

The Quantum Spin Hall Effect

16 / 38

• The different matrix elements can be calculated

• Plugging this back we get

$$\begin{split} \langle \psi(k) | \mathcal{H}(k) | \psi(k) \rangle &= \sum_{j,\ell',\ell} \phi^{\dagger} \mathcal{M}(k) \phi \lambda^{\ell'-\ell} \delta_{\ell',j} \delta_{\ell,j} \\ &+ \sum_{j,\ell',\ell} \phi^{\dagger} \mathcal{T} \phi \lambda^{\ell'-\ell} \delta_{\ell',j} \delta_{\ell,j+1} + \sum_{j,\ell',\ell} \phi^{\dagger} \mathcal{T}^{\dagger} \phi \lambda^{\ell'-\ell} \delta_{\ell',j+1} \delta_{\ell,j} \end{split}$$

• The sum over $j,\,\ell'$ and ℓ goes away to give

$$\begin{split} \langle \psi(k) | \mathcal{H}(k) | \psi(k) \rangle &= \phi^{\dagger}(k) \mathcal{M}(k) \phi(k) \\ &+ \lambda^{-1} \phi^{\dagger}(k) \mathcal{T} \phi(k) + \lambda \phi^{\dagger}(k) \mathcal{T}^{\dagger} \phi(k) = E(k) \end{split}$$

Tejas Deshpande (Caltech)

The Quantum Spin Hall Effect

★ 문 → ★ 문 →

• Simplified Schrodinger equation

$$\lambda^{-1} \mathcal{T} \phi(k) + \lambda \mathcal{T}^{\dagger} \phi(k) + \mathcal{M}(k) \phi(k) = E(k) \phi(k)$$

• Plugging in the explicit expressions for $\mathcal{M}(k)$ and \mathcal{T} we get

$$\lambda^{-1} \left(\frac{iA}{2} \Gamma^2 + B\Gamma^5 \right) \phi(k) + \lambda \left(-\frac{iA}{2} \left(\Gamma^2 \right)^{\dagger} + B \left(\Gamma^5 \right)^{\dagger} \right) \phi(k) + \left(A \sin(k) \Gamma^1 - 2B \left[2 - \frac{M}{2B} - \cos(k) \right] \Gamma^5 \right) \phi(k) = E(k) \phi(k)$$

• Multiplying both sides by Γ^5 on the right side we get

$$\begin{split} &\left(\left(\lambda^{-1}-\lambda\right)\frac{iA}{2}\Gamma^{5}\Gamma^{2}+\left(\lambda^{-1}+\lambda\right)B\right)\phi(k)-2B\left[2-\frac{M}{2B}-\cos(k)\right]\phi(k)\\ &=\left[E(k)-A\sin(k)\Gamma^{1}\right]\Gamma^{5}\phi(k) \end{split}$$

(D) (A) (A) (A) (A) (A)

• Two eigenvalue equations

$$i\Gamma^{5}\Gamma^{2}\phi(k) = \underbrace{\left[\frac{2}{A\left(\lambda^{-1}-\lambda\right)}\left\{-\left(\lambda^{-1}+\lambda\right)B+2B\left[2-\frac{M}{2B}-\cos(k)\right]\right\}\right]}_{\pm 1}\phi(k)$$

$$\Gamma^{1}\phi(k) = \underbrace{\left[\frac{E(k)}{A\sin(k)}\right]}_{\pm 1}\phi(k)$$

• Solve quadratic equation

$$\lambda_{\pm,\{1,2\}} = \frac{1}{(2B \mp A)} \left\{ [4B - M - 2B\cos(k)] + \{+,-\}\sqrt{[4B - M - 2B\cos(k)]^2 + A^2 - 4B^2} \right\}$$

• Edge dispersion

$$E(k) = \pm A\sin(k)$$

Tejas Deshpande (Caltech)

The Quantum Spin Hall Effect

January 13, 2013 19 / 38

æ

→ 同 ▶ → 臣 ▶ → 臣 ▶

• Define new quantity m(k,M) in the expression for λ

$$\lambda_{\pm,\{1,2\}} = \frac{1}{(2B \mp A)} \left\{ \underbrace{[4B - M - 2B\cos(k)]}_{m(k,M)} + \{+,-\} \sqrt{[4B - M - 2B\cos(k)]^2 + A^2 - 4B^2} \right\}$$

• Recall ansatz

$$\psi(k,j) = \lambda^{-j}\phi(k)$$

• Normalization condition on the bottom edge

 $|\lambda| > 1$

• Edge states can only exist for

-2B < m(k,M) < 2B

Tejas Deshpande (Caltech)

The Quantum Spin Hall Effect

January 13, 2013 20 / 38

- Bulk dispersion (blue)
 - $E_{\pm}(\mathbf{k}) = \pm \sqrt{A^2 (\sin^2(k_x) + \sin^2(k_y)) + M^2(\mathbf{k})}$ • $\mathcal{M}(\mathbf{k}) = M - 2B (2 - \cos(k_x) - \cos(k_y))$
- Surface dispersion (red)
 - $E_s(k_x) = -As\sin(k_x)$ • $s = \pm 1 (\uparrow\downarrow)$
- $E_s(k_x)$ is valid for $-k_x^{\max} < k < k_x^{\max}$ and the bulk bands have *negative* effective mass, where $k_x^{\max} = \cos^{-1} (1 M/2B)$

- Given parameters for 7 nm HgTe: A = 3.65, B = -68.6, M = -0.010
- Actual parameters: A = 0.265, B = -55.6, M = -0.010

Tejas Deshpande (Caltech)

イロト イヨト イヨト イヨト

21 / 38

• The current I_i in a contact i (at the chemical potential μ_i) using the Landauer-Büttiker formula

$$I_i = \frac{e}{h} \sum_j \left(T_{ji} \mu_i - T_{ij} \mu_j \right)$$

- T_{ij} is the trasmission probability for the electron to go from contacts $i \rightarrow j$
- There is perfect transmission between consecutive contacts (other $T_{ij} = 0$)

$$T_{i,i+1} = T_{i+1,i}$$
$$= 1$$

• For current passed from contacts $k \to \ell$, i.e. $I_k = -I_\ell \equiv I_{k\ell}$ (rest of the $I_i = 0$) we get a set of *linear* coupled equations in μ_i

22 / 38

・コン ・ポン ・モン・

- Say current is passed from contacts $1 \rightarrow 4$, i.e. $I_1 = -I_4 \equiv I_{14}$
- We get six equations in six unknowns μ_i

$$I_{1} = \frac{e}{h} (\mu_{6} + \mu_{2} - 2\mu_{1}) = I_{14}$$

$$I_{2} = \frac{e}{h} (\mu_{1} + \mu_{3} - 2\mu_{2}) = 0$$

$$I_{3} = \frac{e}{h} (\mu_{2} + \mu_{4} - 2\mu_{3}) = 0$$

$$I_{4} = \frac{e}{h} (\mu_{3} + \mu_{5} - 2\mu_{4}) = -I_{14}$$

$$I_{5} = \frac{e}{h} (\mu_{4} + \mu_{6} - 2\mu_{5}) = 0$$

$$I_{6} = \frac{e}{h} (\mu_{5} + \mu_{1} - 2\mu_{6}) = 0$$

• The set of coupled equations can be compactly written as

• But det (A) = 0! Need to fix one μ_i as reference

• The insolubility $(\det (A) = 0)$ is due to redundancy, i.e. not all μ_i 's can be treated as unknowns

・ロト ・四ト ・ヨト ・ヨト

• Say we set $\mu_4 = 0$ (or gound)

• Remove extra equation by performing row reduction

$$\frac{e}{h} \begin{pmatrix} -2 & 1 & 0 & 0 & 1\\ 1 & -2 & 1 & 0 & 0\\ 0 & 1 & -2 & 0 & 0\\ 0 & 0 & 1 & 1 & 0\\ 1 & 0 & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} \mu_1\\ \mu_2\\ \mu_3\\ \mu_5\\ \mu_6 \end{pmatrix} = I_{14} \begin{pmatrix} 1\\ 0\\ 0\\ -1\\ 0 \end{pmatrix}$$

Tejas Deshpande (Caltech)

臣

• Solution of Matrix Equation

$$\begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_5 \\ \mu_6 \end{pmatrix} = \frac{I_{14}h}{e} \begin{pmatrix} -2 & 1 & 0 & 0 & 1 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & -2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_5 \\ \mu_6 \end{pmatrix} = \frac{I_{14}h}{e} \begin{pmatrix} -3/2 \\ -1 \\ -1/2 \\ -1/2 \\ -1 \end{pmatrix}$$

 \bullet Voltage difference across contacts i and j

$$V_{ij} = \frac{1}{(-e)} \left(\mu_i - \mu_j \right)$$

- Computation of two-terminal resistance $R_{14,14}$
 - The voltage V_{14} is given by

$$V_{14} = \frac{1}{(-e)} (\mu_1 - \mu_4)$$

= $\frac{1}{(-e)} \left(-\frac{3I_{14}h}{2e} - 0 \right)$
= $\left(\frac{3h}{2e^2} \right) I_{14}$

• Therefore, the two-terminal resistance is

$$R_{14,14} \equiv \frac{V_{14}}{I_{14}}$$
$$= \frac{3h}{2e^2}$$

Tejas Deshpande (Caltech)

The Quantum Spin Hall Effect

January 13, 2013 27 / 38

- Computation of four-terminal resistance $R_{14,23}$
 - The voltage V_{23} is given by

$$V_{23} = \frac{1}{(-e)} (\mu_2 - \mu_3)$$

= $\frac{1}{(-e)} \left(-\frac{I_{14}h}{e} - \left(-\frac{I_{14}h}{2e} \right) \right)$
= $\left(\frac{h}{2e^2} \right) I_{14}$

• The four-terminal resistance is

$$R_{14,23} \equiv \frac{V_{23}}{I_{14}}$$
$$= \frac{h}{2e^2}$$

The Quantum Spin Hall Effect

æ

• Changing contacts

• For current passed between contacts 1 and 3, i.e. $I_1 = -I_3 = I_{13}$ we get a matrix equation (rest of the $I_i = 0$)

$$\underbrace{\frac{e}{h}}_{A}\underbrace{\left(\begin{array}{cccccc} -2 & 1 & 0 & 0 & 1\\ 1 & -2 & 1 & 0 & 0\\ 0 & 1 & -2 & 0 & 0\\ 0 & 0 & 1 & 1 & 0\\ 1 & 0 & 0 & 1 & -2 \end{array}\right)}_{A}\underbrace{\left(\begin{array}{c} \mu_{1} \\ \mu_{2} \\ \mu_{3} \\ \mu_{5} \\ \mu_{6} \end{array}\right)}_{x} = I_{13}\underbrace{\left(\begin{array}{c} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{array}\right)}_{b}$$

• Different Convention

- We only changed *b* compared to the previous matrix equation
- Ideally we should set $\mu_3 = 0$ instead of μ_4 . But this won't matter much

Tejas Deshpande (Caltech)

イロト イヨト イヨト イヨ

• Solution of Matrix Equation

$$\begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_5 \\ \mu_6 \end{pmatrix} = \frac{I_{13}h}{e} \begin{pmatrix} -2 & 1 & 0 & 0 & 1 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & -2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_5 \\ \mu_6 \end{pmatrix} = \frac{I_{13}h}{e} \begin{pmatrix} -1 \\ -1/3 \\ 1/3 \\ -1/3 \\ -2/3 \end{pmatrix}$$

イロト イヨト イヨト イヨト

臣

- Computation of two-terminal resistance $R_{13,13}$
 - The voltage V_{13} is given by

$$V_{13} = \frac{1}{(-e)} (\mu_1 - \mu_3)$$

= $\frac{1}{(-e)} \left(-\frac{I_{13}h}{e} - \frac{I_{13}h}{3e} \right)$
= $\left(\frac{4h}{3e^2} \right) I_{13}$

• Therefore, the two-terminal resistance is

$$R_{13,13} \equiv \frac{V_{13}}{I_{13}}$$
$$= \frac{4h}{3e^2}$$

Tejas Deshpande (Caltech)

The Quantum Spin Hall Effect

January 13, 2013 31 / 38

- Computation of four-terminal resistance $R_{13,56}$
 - The voltage V_{56} is given by

$$V_{56} = \frac{1}{(-e)} (\mu_5 - \mu_6)$$

= $\frac{1}{(-e)} \left(-\frac{I_{13}h}{3e} - \left(-\frac{2I_{13}h}{3e} \right) \right)$
= $\left(\frac{h}{3e^2} \right) I_{13}$

• The four-terminal resistance is

$$R_{13,56} \equiv \frac{V_{56}}{I_{13}}$$
$$= \frac{h}{3e^2}$$

The Quantum Spin Hall Effect

January 13, 2013 32 / 38

æ

Comparison of Theory and Experiment

• Summary of the different two- and four-terminal resistances

$R_{ij,k\ell}$	Expected value
$R_{14,14}$	$3h/2e^2$
$R_{14,23}$	$h/2e^2$
$R_{13,13}$	$4h/3e^{2}$
$R_{13,56}$	$h/3e^2$

"Helical" Liquid

• Edge Hamiltonian

$$H = \int \frac{dk}{2\pi} \left(\psi_{k,\uparrow}^{\dagger} v k \psi_{k,\uparrow} - \psi_{k,\downarrow}^{\dagger} v k \psi_{k,\downarrow} \right) + H_{\text{pert}}$$

• Time-Reversal Symmetry (TRS) expressed as

$$T^{-1}\psi_{k,\uparrow}T = \psi_{-k,\downarrow}, \quad T^{-1}\psi_{k,\downarrow}T = -\psi_{-k,\uparrow}$$

 $\bullet~{\rm If}~H_{\rm pert}$ does not respect TRS a simple "mass" term can be added

$$H_{\rm mass} = \int \frac{dk}{2\pi} m \left(\psi_{k,\uparrow}^{\dagger} \psi_{k,\downarrow} + {\rm h.c.} \right)$$

but $T^{-1}H_{\text{mass}}T = -H_{\text{mass}}$

• If H_{pert} respects TRS then it can only include 2n particle scattering processes like $\psi_{k\uparrow\uparrow}^{\dagger}\psi_{k'\uparrow\uparrow}^{\dagger}\psi_{p,\downarrow}\psi_{p',\downarrow}$

\mathbb{Z}_2 versus \mathbb{Z}

- In a topologically non-trivial system there must be odd number of Kramers' pairs crossing the Fermi energy
- Say we had two copies of *helical* edge states in TRS system

$$H = \int \frac{dk}{2\pi} \sum_{s=1,2} \left(\psi_{k,s,\uparrow}^{\dagger} v_s k \psi_{k,s,\uparrow} - \psi_{k,s,\downarrow}^{\dagger} v_s k \psi_{k,s,\downarrow} \right)$$

• $H_{\text{pert}} = \psi^{\dagger}_{k,s,\uparrow} \psi_{-k,s',\downarrow}$ is allowed only for $s \neq s'$ and the following mass term can gap out the system

$$\int \frac{dk}{2\pi} M\left(\psi_{k,s,\uparrow}^{\dagger}\psi_{k,s',\downarrow} + \text{h.c.}\right)$$

Three-Dimensional Topological Insulators

- Similar to HgTe band inversion predicted in alloy ${\rm Bi}_x{\rm Sb}_{1-x}$
- Topological Band Theory (TBT) worked out by Fu, Kane, and Mele
- New topological invariant: (ν₀; ν₁ν₂ν₃) for inversion symmetric materials
- Bulk defects causes Fermi level to lie in the middle of a band, i.e. cannot detect edge states using transport
- Angle-Resolved Photoemission Spectroscopy (ARPES) can independently image surface and bulk spectrum

Figure : ARPES on Bi₂Se₃. Courtesy of Fisher Group (Stanford)

Conclusion and Outlook

• Experimental Work

- So far experiments have only confirmed the existence of edge states in 2-D and 3-D topological insulators
- However, the intrinsic topological properties like
 - Fractional charge for the quantum spin Hall
 - Topological Kerr/Faraday effect
 - Topological magneto-electric effect
 - Monopole effect for 3-D topological insulators

have not been observed yet

• Moreover, not all systems possessing topological order necessarily have edge states

• Theoretical Investigations

Tei

- What new types of exotic phases are possible by introducing interaction?
- Topological _____ insulator

• Anderson	• Crystalline	• Mott
• Band	• Kondo	
• Crystalline		(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三
as Deshpande (Caltech)	The Quantum Spin Hall Effect	January 13, 2013 37 / 38

References

- Joseph Maciejko, Taylor L. Hughes, and Shou-Cheng Zhang. "The quantum spin Hall effect." Annual Reviews of Condensed Matter Physics 2.1 (2011): 31-53.
- Markus König, Hartmut Buhmann, Laurens W. Molenkamp, Taylor Hughes, Chao-Xing Liu, Xiao-Liang Qi and Shou-Cheng Zhang, "The Quantum Spin Hall Effect: Theory and Experiment." *Journal of the Physical Society of Japan* 77 (2008) 031007.
- Matthias Sitte. Quantum Hall Effect and Surface Criticality in 3D Topological Insulators. Diss. Universität zu Köln, 2012.

イロト イヨト イヨト イヨト