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~Introduction |
Classification of Phases of Matter

Ginzburg-Landau Theory of Phase Transitions

o Classify phases based on which symmetries they break

e More rigorous definition of “symmetry breaking”: ground state does not
possess symmetries of the Hamiltonian

o Ordered phase characterized by local order parameter

e Phases Defined by Symmetry Breaking

o Rotational and Translational: Crystalline Solids (continuous to discrete)
e Spin Rotation Symmetry: Ferromagnets and Antiferromagnets

o Counter examples

o Integer and Fractional Quantum Hall Effects
e Certain Spin Liquids

Topological Phases of Quantum Matter

e Topological phases characterized by an invariant quantity: TKNN number
or Chern number
o Chern number is equal to the number of stable gapless edge states
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|
“Topological Protection” of Edge States

e What is “Topological” about this new Quantum Phase?

o The bulk topology is responsible for fractionalization on the edge
o Degrees of freedom of the electron states are not localized
o Failure to define local order parameter makes sense

e Example: The Integer Quantum Hall (QH) Effect

o Area of closed orbits in the bulk becomes quantized, bulk electrons become
localized, and the bulk turns into an insulator

o The skipping edge orbits form extended one-dimensional channels with a
quantized conductance of e2 /h per channel

o Different values of the Hall conductance o4y are distinct phases of matter

o Different o4, cannot be adiabatically connected to each other without
closing a spectral gap
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The Quantum Spin Hall Effect (QSHE)

o Conceptual analogy between the quantum Hall and quantum spin Hall

effects
Spinless 1D chain Spinful 1D chain
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e Transverse spin conductance
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__The Quantum Spin Hall Effect in HgTe Quantum Wells |
Bandstructure of CdTe

e s-like (conduction) band T'¢ and p-like (valence) bands I'; and T's with

(right) and without (left) turning on spin-orbit interaction
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o With spin-orbit interaction I's splits into the Light Hole (LH) and Heavy
Hole (HH) bands away from the I" point
o The split-off band I'7 shifts downward
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__The Quantum Spin Hall Bffect in HgTe Quantum Wells |
Bandstructure of Hg'Te

o s-like (conduction) band I's and p-like (valence) bands I'; and I's with

(right) and without (left) turning on spin-orbit interaction
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o The I's splits into LH and HH like CdTe except the LH band is inverted
e The ordering of LH band in I's and I's bands are switched

eshpande (Caltech)

The Quantum Spin Hall Effect

January 13, 2013

7 / 38



Quantum Well Fabrication

e Molecular Beam Epitaxy (MBE) grown
HgTe/CdTe quantum well structure

e Confinement in (say) the z-direction

j
Immimp

o L =600 ym and W = 200 pum

o Gate voltage Vi used to tune the Fermi level
in HgTe quantum well
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Topological Phase Transition

e For dgw > d. the HgTe layer becomes quantum spin Hall insulator
HgTe Ts Te HgTe _
El |
CdTe || -- -4 CdTe CdTe |- CdTe
H1 El
— Tg Tg e
d<d, d>d,

The E; and H; subbands switch to inverted ordering for dow > d. just
like in bulk HgTe

Quantum confinement does not help create a topologically nontrivial
phase

Why not just use bulk HgTe then?
There is no gap in (unstrained) bulk HgTe!
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__The Quantum Spin Hall Bffect in HgTe Quantum Wells |
The Bernevig-Hughes-Zhang Model

o Construction of a simple 2D lattice model
o Define a new basis from two spaces: orbital (7;) and spin (o;) with

1=0,1,2,3

T

9= (1Bt Bt fmed) (H-3) )
o Must respect symmetries of the system: time-reversal and inversion
0 1 0 O 1 0 0 0
A . -1 0 0 O A 01 0 0
0 =irg®o,K = 00 o0 1 K,P=1yQoy = 00 -1 o0
0 0 -1 0 0 0 0 -1

o Representation of arbitrary 4 x 4 Hamiltonian matrix

H(k) =
{0} = 200454
1
Ly = o [I ]

(Caltech)
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__The Quantum Spin Hall Bffect in HgTe Quantum Wells |
The Bernevig-Hughes-Zhang Model

@ Definition of I';’s (4 x 4 — 1 = 15 choices!)

{F05F15F25F35F4} = {Tz R 00, —Ta Oy, =Ty @Oy, =Tz D0z, Ty & UO}
e Check symmetries of the {I';}

[ [To|T:|Ts|Ts [Ty
O |+ | -|-1-1-
Pl+[-1-1-1-
OP |+ |+ |+ |+ |+

o Rotation of m about z, y, and z-axis

| [ Lo [Ty [Ty [ Ts | T |

Re(m) | + |+ | = | = | +
Ry(m) | + | — | + | — | +
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Model Hamiltonian

@ The Hamiltonian on a simple-cubic lattice

3
Hk) = e(k)lyxs + ML+ Z (accos (k;a) To + fsin (kia)T;)
i=1

e In 2-D HgTe quantum wells (fix k)

Hk) = e(k)yxa+ (M —2B)Ty—2Bcos(kza) Ty
—2Bcos (kya)To + Asin (kga) Ty + Asin (kya) 'y

o Ignore £(k), setting a = 1, and defining
M(k) =M — 2B (2 — cos (k) — cos (ky))

H(k) = MK+ Asin (k)T + Asin (k) Ty
e Full Hamiltonian (already diagonal in k)

H = ) (M(K)o+ Asin (k) Ty + Asin (k) I2)
k
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__The Quantum Spin Hall Effect in HgTe Quantum Wells |
Solution of Bulk States

e Neat trick to diagonalize

H? (k) = M*(K)T3 + A?sin? (k) I + A%sin? (k,) T3
+ Asin (k,) M(K) {To, T} (1)
+ Asin (k,) M(k) {T¢, T2}
+ A%sin (k) sin (k,) {T'1, T2}

@ Recall commutation relations
{Ii, T} = 26;luxa (2)
e Using (2) in (1) we get
Hi(k) = (Mg(k) + A?sin? (k,) + A%sin? (ky)) T4xa
:I:\/Mz(k) + A?sin? (k;) + A?sin? (k)

Ei(k) =
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__The Quantum Spin Hall Bffect in HgTe Quantum Wells |
Explicit Solution of Edge States

e Finite thickness in the y-direction

1 o
— ik
Ck = Chok, =7 > ety
j

H= Z (Asin(k,)I'" + Asin(k,)T? + (M — 2B (2 — cos(k,) — cos(ky))) ') cltck
k
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__The Quantum Spin Hall Bffect in HgTe Quantum Wells |
Explicit Solution of Edge States

e Dropping the subscript we can simply set k =k,

H= LZ( C;”Ck,y +TC,€]C;§J+1+T ij+1ckj)

_ZH 5kk’

k,k’

@ The Schrodinger equation can be written as
H[Y) = El¢)

e Since H(k)dy i is already diagonal, we get a set of decoupled Schrodinger
equations in k

Hk) (k) = E(k)|(k))
) = Qv (k)), E=> E(k)
k

k

(k) = w(k, j)cl|o)

J
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__The Quantum Spin Hall Bffect in HgTe Quantum Wells |
Explicit Solution of Edge States

e Schrodinger equation

H(R) (k) = E(R)[p(k), (k) =D 1k, 5)ck0)

J
@ Use the following ansatz (A € C)
bk, j) = A" (k)

e Plugging in the ansatz into the Schrodinger equation

(W (k) [H (k) = Y o MBS = Olewc], jcr jchl0)
J L
+ 3 6N ()TN~ (0lcwc) jer,jrrc0)
3,
+ 3 ¢ (BT o)X~ (Olcerch ;4 ycr.ichlO)
JA L
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__The Quantum Spin Hall Bffect in HgTe Quantum Wells |
Explicit Solution of Edge States

o The different matrix elements can be calculated

<O|celc£7jck7jCZ|O> = (5@/,j(5g7j
(Oewey sergr1cl0) = Sury8e551
<0|Cé’C£,j+1ck,jCZ|0> = v j+100

@ Plugging this back we get
(WR)HE) (k) =Y T M)A 60 ;605
3,00

+ Y TN T b+ Y HTTTON T 6y 100

Ji L Ji L
@ The sum over j, £ and ¢ goes away to give

(W(k)[H (k)| (k) = ¢' (k)M (k)p(k)
+ AT (k)T o(k) + AT (k)T (k) = E(k)
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__The Quantum Spin Hall Bffect in HgTe Quantum Wells |
Explicit Solution of Edge States

e Simplified Schrodinger equation
AT (k) + XT T p(k) + M(k)g (k) = E(k)¢(k)

e Plugging in the explicit expressions for M(k) and T we get

Al (ifﬁ + BF5> (k) + A (-if r)'+B (r5)f) (k)
+ (A sin(k)T' — 2B {2 - % - cos(k)} F5> o(k) = BE(k)p(k)

o Multiplying both sides by I'> on the right side we get

(()\_1 - 2) %FE’FQ + (A7) B) (k) — 2B {2 - % — cos(k)} o(k)

= [E(k) — Asin(k)T!] T2 (k)
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__The Quantum Spin Hall Bffect in HgTe Quantum Wells |
Explicit Solution of Edge States

e Two eigenvalue equations

ir°T2¢ (k)
_ [A(A%_A) {_ (AL + ) B+2B {2 S cos(k)} H 0
+1
o) = | o | 40)
+1

@ Solve quadratic equation

1
>‘i7{1,2} = m {[43 — M - 2B cos(k)]

+{+ —}\/[43 — M —2Bcos(k)]” + A% — 432}

e Edge dispersion

E(k) = £Asin(k)
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__The Quantum Spin Hall Bffect in HgTe Quantum Wells |
Explicit Solution of Edge States

e Define new quantity m(k, M) in the expression for A

1

At (1,2} = QBT A [4B — M — 2B cos(k)]

m(k,M)

{4, — 1/ 4B — M — 2B cos(k)]” + A2 — 4B?

@ Recall ansatz

b(k,j) = A o(k)
e Normalization condition on the bottom edge
[A]>1
e Edge states can only exist for

—2B <m(k,M) < 2B
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__The Quantum Spin Hall Bffect in HgTe Quantum Wells |
Explicit Solution of Edge States

e Bulk dispersion (blue)
o Ei(k) = £4/A2 (sin?(ks) + sin?(ky)) + M2(k)

e Surface dispersion (red)
o E(ky) = —Assin(kz)

kmax = cos™! (1 — M/2B)

)
o M(k) =M — 2B (2 — cos(kz) — cos(ky))

o s=1(11)

o Fg(ky) is valid for —k2®* < k < k2** and the
bulk bands have negative effective mass, where

Bulk and edge states dispersion [eV]
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— kz

L
JOaX
k;

e Given parameters for 7 nm HgTe: A = 3.65, B = —68.6, M = —0.010
@ Actual parameters: A = 0.265, B = —55.6, M = —0.010
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The Landauer-Bittiker formalism

@ The current I; in a contact i (at the chemical 1 2 3
potential ;) using the Landauer-Biittiker formula

(&
Ii = E;(Tjiﬂi_ﬂjﬂj) B Ly

e Tj; is the trasmission probability for the electron to go from contacts
1=
o There is perfect transmission between consecutive contacts (other T;; = 0)
Tiiv1 = Tiv1,i
=1

e For current passed from contacts k — ¢, i.e. Iy = —Iy = Iy (rest of the
I; = 0) we get a set of linear coupled equations in y;
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The Landauer-Bittiker formalism

@ Say current is passed from contacts 1 — 4, i.e. 1 2 3
I1 = —.[4 = I14
e We get six equations in six unknowns p;
e 6 5 4
o= 5 (pe+ 2 = 2m) =
e
L = 4 (11 + ps — 2p2) =
e
Iy = E (p2 + pa — 2p3) =
e
I, = 7 (13 + ps — 2p4) = —1I14
e
I, = 7 (1a + pe — 2p5) =
e
Is = 7 (s + p1 — 2p6) =
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The Landauer-Bittiker formalism

o The set of coupled equations can be compactly written as

-2 1 0 0 0 1 L 1
1 =2 1 0 0 0 tho 0
el 01 -2 1 0 0 13 g 0
Rl o o 1 -2 1 o0 I T 1
o 0 1 1 -2 1 15 0
1 0 0 0 1 =2 L6 0

" N—_—— N——
T b

e But det (A) = 0! Need to fix one pu; as reference

e The insolubility (det (A) = 0) is due to redundancy, i.e. not all u;’s can
be treated as unknowns
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The Landauer-Bittiker formalism

e Say we set ug =0 (or gound)

-2 1 0 0 0 1 I 1
1 -2 1 0 0 0 L2 0

el o 1 -2 1 0 o0 s _ 0

h 0O 0 1 -2 1 0 0 I .
0o o0 1 1 -2 1 s 0
1 0 0 0 1 -2 e 0

2 1 0 0 1 " 1
121 0 0 1o 0
- 0 1 -2 0 0 1253 = 114 0
o 0 11 o0 s 1
1 0 0 1 -2 g 0
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The Landauer-Bittiker formalism

@ Solution of Matrix Equation

11 -2 1 0 0 1 1
142 Iiih 1 -2 1 0 0 0
143 = 0 1 -2 0 0 0
115 € 0 0 1 1 0 -1
16 1 0o 0 1 -2 0
o -3/2
M2 Ii4h -1
H3 = % —1/2
s -1/2
6 -1
o Voltage difference across contacts i and j 1 2 3
1
Vi = i i
J (_6) (/’L lu’])
6 5 4
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The Landauer-Bittiker formalism

o Computation of two-terminal resistance Ri4 14

o The voltage V14 is given by 1 2 3

Via = é(ul — la)

1 31140
= — -0
(—e) 2e
3h
= — | I
(35 ) fa
o Therefore, the two-terminal resistance is

Vi
Iy
3
2e2
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The Landauer-Bittiker formalism

o Computation of four-terminal resistance Rj4 23

o The voltage Va3 is given by 1 2 3

(je) (:U/Q - /1*3>

e e )
()

@ The four-terminal resistance is

Vas

Vi
Iy
h

2¢?
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The Landauer-Bittiker formalism

e Changing contacts

o For current passed between contacts 1 and 3, i.e. [1 = —I3 = I13 we get a
matrix equation (rest of the I; = 0)

-2 1 0o 0 1 1 1
. 1 -2 1 0 O 12 0
E O 1 -2 O 0 M3 = 113 -1
0 0 1 1 0 us 0
1 0 1 -2 e 0
S—— ———
A z b
o Different Convention
o We only changed b compared to the previous matrix 1 2 3

equation

o Ideally we should set pg = 0 instead of p4. But this won’t
matter much 6 5 4
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The Landauer-Bittiker formalism

@ Solution of Matrix Equation

11 2 1 0 0 1\ '/ 1
11 ol 12 1 000 0
i3 = 22 0o 1 20 o0 -1
145 € 0 0 1 1 0 0
116 1 0 0 1 -2 0
K1 -1
M2 I2h _1/3
s -1/3
16 -2/3
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The Landauer-Bittiker formalism

o Computation of two-terminal resistance Ri3 13

o The voltage Vi3 is given by 1 2 3

Vis = (—1@) (1 — p3)

1 ( Ish Igh
 (—e) e 3e

o Therefore, the two-terminal resistance is

viy
I3
_ 4n
T 3e2
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The Landauer-Bittiker formalism

o Computation of four-terminal resistance R;3 56

o The voltage V¢ is given by 1 2 3

(je) (:U/S - /1*6>

1 ( Lsh [ 2Ish y . -
 (~e) 3e 3e

h

(SCQ)IB

@ The four-terminal resistance is

Vse
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Comparison of Theory and Experiment

e Summary of the different two- and four-terminal resistances

Rij ke \ Expected value

R14714 3h/262
Ri403 h/2e?
R13713 4h/362
Ri3,56 h/3e?
i s s e R e T T T T T T
2
s 3/2h/e* ] L ]
4/3 h/e?
30t d 2 3 11 i 3 5 i
I:1-4
vios 11 1:1-3
RS V:5-6 |
6 5 4
________________TTF_: [ Riziz ]
12hte ] | 1
1 173 hie? |
Ria23 Ri3 56
3 -1 0 1 2 3 4
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o e SRR EET e B |
“Helical” Liquid

e Edge Hamiltonian
dk
1= [ 55 (vl pons = o] okvrs) + Her

e Time-Reversal Symmetry (TRS) expressed as

T "Wt T =_py, T ' T =—t_py

o If Hyert does not respect TRS a simple “mass” term can be added

Hopass = / %m (zp;wk, ¢—|—h.c.)

but T_leassT = —Hpass
If Hpere respects TRS then it can only include 2n particle scattering
processes like dj/iﬂwli%ippv“/}l"»i
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Zo versus Z

e In a topologically non-trivial system there must be odd number of

)

Kramers’ pairs crossing the Fermi energy

@ Say we had two copies of helical edge
states in TRS system

H:/% 2 (wlt,m“sk%,sﬁ ;§\\ E\\% §\\\E\\%

) H;é _nlfikth wf liwving mH - te dmnlynf x\\\\\\\\\k &\\E\\\\%k
gap out the system &\N& &\\Q&

dk:
[t (gt +e)
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Three-Dimensional Topological Insulators

e Similar to HgTe band inversion predicted in
alloy Bi,Sby_, P -ermileve

. band (BCB)
e Topological Band Theory (TBT) worked out ...
by Fu, Kane, and Mele ?"; 0
e New topological invariant: (vp;v1vevs) for 2 o
inversion symmetric materials 5 o
@ Bulk defects causes Fermi level to lie in the T o (05
middle of a band, i.e. cannot detect edge states 08
using transport .
o Angle-Resolved Photoemission Spectroscopy kA

(ARPES) can independently image surface and Figure : ARPES on BisSes.
bulk spectrum

Courtesy of Fisher Group
(Stanford)
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Conclusion and Outlook

o Experimental Work

e So far experiments have only confirmed the existence of edge states in 2-D
and 3-D topological insulators
o However, the intrinsic topological properties like
o Fractional charge for the quantum spin Hall
e Topological Kerr/Faraday effect
o Topological magneto-electric effect
e Monopole effect for 3-D topological insulators
have not been observed yet
e Moreover, not all systems possessing topological order necessarily have
edge states

@ Theoretical Investigations

o What new types of exotic phases are possible by introducing interaction?

o Topological __ insulator
e Anderson o Crystalline o Mott
e Band e Kondo

o Crystalline
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