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Introduction

Classification of Phases of Matter

Ginzburg-Landau Theory of Phase Transitions
Classify phases based on which symmetries they break
More rigorous definition of “symmetry breaking”: ground state does not
possess symmetries of the Hamiltonian
Ordered phase characterized by local order parameter

Phases Defined by Symmetry Breaking
Rotational and Translational: Crystalline Solids (continuous to discrete)
Spin Rotation Symmetry: Ferromagnets and Antiferromagnets

Counter examples
Integer and Fractional Quantum Hall Effects
Certain Spin Liquids

Topological Phases of Quantum Matter
Topological phases characterized by an invariant quantity: TKNN number
or Chern number
Chern number is equal to the number of stable gapless edge states
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Introduction

“Topological Protection” of Edge States

What is “Topological” about this new Quantum Phase?
The bulk topology is responsible for fractionalization on the edge
Degrees of freedom of the electron states are not localized
Failure to define local order parameter makes sense

Example: The Integer Quantum Hall (QH) Effect
Area of closed orbits in the bulk becomes quantized, bulk electrons become
localized, and the bulk turns into an insulator
The skipping edge orbits form extended one-dimensional channels with a
quantized conductance of e2/h per channel
Different values of the Hall conductance σxy are distinct phases of matter
Different σxy cannot be adiabatically connected to each other without
closing a spectral gap
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Phenomenology of the Quantum Spin Hall Effect

The Quantum Spin Hall Effect (QSHE)

Conceptual analogy between the quantum Hall and quantum spin Hall
effects

Spinless 1D chain

HSQHQ

2+2 = 41+1 = 2

Spinful 1D chain

Impurity

Transverse spin conductance

σspin
xy = ν

(
2e2

h

)
ν = 0, 1
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Bandstructure of CdTe
s-like (conduction) band Γ6 and p-like (valence) bands Γ7 and Γ8 with
(right) and without (left) turning on spin-orbit interaction
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With spin-orbit interaction Γ8 splits into the Light Hole (LH) and Heavy
Hole (HH) bands away from the Γ point
The split-off band Γ7 shifts downward
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Bandstructure of HgTe

s-like (conduction) band Γ6 and p-like (valence) bands Γ7 and Γ8 with
(right) and without (left) turning on spin-orbit interaction

-4

-3

-2

-1

0

1

2

-4

-3

-2

-1

0

1

2

The Γ8 splits into LH and HH like CdTe except the LH band is inverted
The ordering of LH band in Γ8 and Γ6 bands are switched
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Quantum Well Fabrication

Molecular Beam Epitaxy (MBE) grown
HgTe/CdTe quantum well structure
Confinement in (say) the z-direction

L = 600 µm and W = 200 µm
Gate voltage VG used to tune the Fermi level
in HgTe quantum well
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Topological Phase Transition

For dQW > dc the HgTe layer becomes quantum spin Hall insulator
HgTe

CdTe CdTe

H1

E1

d < dc d > dc

CdTe

HgTe

CdTe

E1

H1

Γ6 Γ6

Γ8 Γ8

The E1 and H1 subbands switch to inverted ordering for dQW > dc just
like in bulk HgTe
Quantum confinement does not help create a topologically nontrivial
phase
Why not just use bulk HgTe then?
There is no gap in (unstrained) bulk HgTe!
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The Quantum Spin Hall Effect in HgTe Quantum Wells

The Bernevig-Hughes-Zhang Model
Construction of a simple 2D lattice model

Define a new basis from two spaces: orbital (τi) and spin (σi) with
i = 0, 1, 2, 3

|ψ〉 =
( ∣∣E1,+ 1

2

〉 ∣∣E1,− 1
2

〉 ∣∣H1,+ 1
2

〉 ∣∣H1,− 1
2

〉 )T

Must respect symmetries of the system: time-reversal and inversion

Θ̂ = iτ0⊗ σyK =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

K, P̂ = τ0⊗ σy =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


Representation of arbitrary 4× 4 Hamiltonian matrix

H(k) = ε(k)I4×4 +
4∑

i=0
di(k)Γi +

4∑
i<j=0

dij(k)Γij i, j = 0, 1, 2, 3, 4

{Γi,Γj} = 2δijI4×4

Γij = 1
2i [Γi,Γj ]

Tejas Deshpande (Caltech) The Quantum Spin Hall Effect January 13, 2013 10 / 38



The Quantum Spin Hall Effect in HgTe Quantum Wells

The Bernevig-Hughes-Zhang Model

Definition of Γi’s (4× 4− 1 = 15 choices!)

{Γ0,Γ1,Γ2,Γ3,Γ4} ≡ {τz ⊗ σ0,−τx ⊗ σx,−τx ⊗ σy,−τx ⊗ σz, τy ⊗ σ0}

Check symmetries of the {Γi}

Γ0 Γ1 Γ2 Γ3 Γ4

Θ̂ + − − − −
P̂ + − − − −

Θ̂P̂ + + + + +

Rotation of π about x, y, and z-axis
Γ0 Γ1 Γ2 Γ3 Γ4

R̂x(π) + + − − +
R̂y(π) + − + − +
R̂z(π) + − − + +
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Model Hamiltonian

The Hamiltonian on a simple-cubic lattice

H(k) = ε(k)I4×4 +MΓ0 +
3∑

i=1
(α cos (kia) Γ0 + β sin (kia) Γi)

In 2-D HgTe quantum wells (fix kz)

H(k) = ε(k)I4×4 + (M − 2B) Γ0 − 2B cos (kxa) Γ0

−2B cos (kya) Γ0 +A sin (kxa) Γ1 +A sin (kya) Γ2

Ignore ε(k), setting a = 1, and defining
M(k) = M − 2B (2− cos (kx)− cos (ky))

H(k) = M(k)Γ0 +A sin (kx) Γ1 +A sin (ky) Γ2

Full Hamiltonian (already diagonal in k)

H =
∑

k
(M(k)Γ0 +A sin (kx) Γ1 +A sin (ky) Γ2)
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Solution of Bulk States

Neat trick to diagonalize

(1)
H2(k) =M2(k)Γ2

0 +A2 sin2 (kx) Γ2
1 +A2 sin2 (ky) Γ2

2
+A sin (kx)M(k) {Γ0,Γ1}
+A sin (ky)M(k) {Γ0,Γ2}
+A2 sin (kx) sin (ky) {Γ1,Γ2}

Recall commutation relations

{Γi,Γj} = 2δijI4×4 (2)

Using (2) in (1) we get

H2(k) =
(
M2(k) +A2 sin2 (kx) +A2 sin2 (ky)

)
I4×4

E±(k) = ±
√
M2(k) +A2 sin2 (kx) +A2 sin2 (ky)
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Explicit Solution of Edge States
Finite thickness in the y-direction

ck ≡ ckx,ky = 1
L

∑
j

eikyjckx,j

H=
∑

k

(
A sin(kx)Γ1 +A sin(ky)Γ2 + (M − 2B (2− cos(kx)− cos(ky))) Γ5) c†kck

H = 1
L

∑
kx

∑
j

[
A sin(kx)Γ1 + (M − 4B + 2B cos(kx)) Γ5] c†kx,jckx,j

+ 1
L

∑
kx

∑
j

(
− iA2 Γ2 +BΓ5

)
c†kx,j+1ckx,j

+ 1
L

∑
kx

∑
j

(
iA

2 Γ2 +BΓ5
)
c†kx,j−1ckx,j
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Explicit Solution of Edge States
Dropping the subscript we can simply set k ≡ kx

H = 1
L

∑
k,j

(
M(k)c†k,jck,j + T c†k,jck,j+1 + T †c†k,j+1ck,j

)
≡
∑
k,k′

H(k)δk,k′

The Schrodinger equation can be written as
H|ψ〉 = E|ψ〉

Since H(k)δk,k′ is already diagonal, we get a set of decoupled Schrodinger
equations in k

H(k)|ψ(k)〉 = E(k)|ψ(k)〉

|ψ〉 =
⊗

k

|ψ(k)〉, E =
∑

k

E(k)

|ψ(k)〉 =
∑

j

ψ(k, j)c†j |0〉
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Explicit Solution of Edge States

Schrodinger equation

H(k)|ψ(k)〉 = E(k)|ψ(k)〉, |ψ(k)〉 =
∑

j

ψ(k, j)c†j |0〉

Use the following ansatz (λ ∈ C)

ψ(k, j) = λ−jφ(k)

Plugging in the ansatz into the Schrodinger equation

〈ψ(k)|H(k)|ψ(k)〉 =
∑
j,`′,`

φ†(k)M(k)φ(k)λ`′−`〈0|c`′c†k,jck,jc
†
`|0〉

+
∑
j,`′,`

φ†(k)T φ(k)λ`′−`〈0|c`′c†k,jck,j+1c
†
`|0〉

+
∑
j,`′,`

φ†(k)T †φ(k)λ`′−`〈0|c`′c†k,j+1ck,jc
†
`|0〉
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Explicit Solution of Edge States

The different matrix elements can be calculated

〈0|c`′c†k,jck,jc
†
`|0〉 = δ`′,jδ`,j

〈0|c`′c†k,jck,j+1c
†
`|0〉 = δ`′,jδ`,j+1

〈0|c`′c†k,j+1ck,jc
†
`|0〉 = δ`′,j+1δ`,j

Plugging this back we get

〈ψ(k)|H(k)|ψ(k)〉 =
∑
j,`′,`

φ†M(k)φλ`′−`δ`′,jδ`,j

+
∑
j,`′,`

φ†T φλ`′−`δ`′,jδ`,j+1 +
∑
j,`′,`

φ†T †φλ`′−`δ`′,j+1δ`,j

The sum over j, `′ and ` goes away to give

〈ψ(k)|H(k)|ψ(k)〉 = φ†(k)M(k)φ(k)
+ λ−1φ†(k)T φ(k) + λφ†(k)T †φ(k) = E(k)
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Explicit Solution of Edge States

Simplified Schrodinger equation

λ−1T φ(k) + λT †φ(k) +M(k)φ(k) = E(k)φ(k)

Plugging in the explicit expressions forM(k) and T we get

λ−1
(
iA

2 Γ2 +BΓ5
)
φ(k) + λ

(
− iA2

(
Γ2)† +B

(
Γ5)†)φ(k)

+
(
A sin(k)Γ1 − 2B

[
2− M

2B − cos(k)
]

Γ5
)
φ(k) = E(k)φ(k)

Multiplying both sides by Γ5 on the right side we get((
λ−1 − λ

) iA
2 Γ5Γ2 +

(
λ−1 + λ

)
B

)
φ(k)− 2B

[
2− M

2B − cos(k)
]
φ(k)

=
[
E(k)−A sin(k)Γ1]Γ5φ(k)
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Explicit Solution of Edge States
Two eigenvalue equations
iΓ5Γ2φ(k)

=
[

2
A (λ−1 − λ)

{
−
(
λ−1 + λ

)
B + 2B

[
2− M

2B − cos(k)
]}]

︸ ︷︷ ︸
±1

φ(k)

Γ1φ(k) =
[

E(k)
A sin(k)

]
︸ ︷︷ ︸

±1

φ(k)

Solve quadratic equation

λ±,{1,2} = 1
(2B ∓A)

{
[4B −M − 2B cos(k)]

+ {+,−}
√

[4B −M − 2B cos(k)]2 +A2 − 4B2
}

Edge dispersion
E(k) = ±A sin(k)
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Explicit Solution of Edge States

Define new quantity m(k,M) in the expression for λ

λ±,{1,2} = 1
(2B ∓A)

[4B −M − 2B cos(k)]︸ ︷︷ ︸
m(k,M)

+{+,−}
√

[4B −M − 2B cos(k)]2 +A2 − 4B2


Recall ansatz

ψ(k, j) = λ−jφ(k)

Normalization condition on the bottom edge

|λ|> 1

Edge states can only exist for

−2B < m(k,M) < 2B
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The Quantum Spin Hall Effect in HgTe Quantum Wells

Explicit Solution of Edge States

Bulk dispersion (blue)
E±(k) = ±

√
A2 (sin2(kx) + sin2(ky)) +M2(k)

M(k) = M − 2B (2− cos(kx)− cos(ky))

Surface dispersion (red)
Es(kx) = −As sin(kx)
s = ±1 (↑↓)

Es(kx) is valid for −kmax
x < k < kmax

x and the
bulk bands have negative effective mass, where
kmax

x = cos−1 (1−M/2B)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Given parameters for 7 nm HgTe: A = 3.65, B = −68.6, M = −0.010
Actual parameters: A = 0.265, B = −55.6, M = −0.010
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Experiments on HgTe Quantum Wells

The Landauer-Büttiker formalism

The current Ii in a contact i (at the chemical
potential µi) using the Landauer-Büttiker formula

Ii = e

h

∑
j

(Tjiµi − Tijµj)

Tij is the trasmission probability for the electron to go from contacts
i→ j

There is perfect transmission between consecutive contacts (other Tij = 0)

Ti,i+1 = Ti+1,i

= 1

For current passed from contacts k → `, i.e. Ik = −I` ≡ Ik` (rest of the
Ii = 0) we get a set of linear coupled equations in µi
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Experiments on HgTe Quantum Wells

The Landauer-Büttiker formalism

Say current is passed from contacts 1→ 4, i.e.
I1 = −I4 ≡ I14

We get six equations in six unknowns µi

I1 = e

h
(µ6 + µ2 − 2µ1) = I14

I2 = e

h
(µ1 + µ3 − 2µ2) = 0

I3 = e

h
(µ2 + µ4 − 2µ3) = 0

I4 = e

h
(µ3 + µ5 − 2µ4) = −I14

I5 = e

h
(µ4 + µ6 − 2µ5) = 0

I6 = e

h
(µ5 + µ1 − 2µ6) = 0
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Experiments on HgTe Quantum Wells

The Landauer-Büttiker formalism

The set of coupled equations can be compactly written as

e

h


−2 1 0 0 0 1
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 1 1 −2 1
1 0 0 0 1 −2


︸ ︷︷ ︸

A


µ1
µ2
µ3
µ4
µ5
µ6


︸ ︷︷ ︸

x

= I14


1
0
0
−1
0
0


︸ ︷︷ ︸

b

But det (A) = 0! Need to fix one µi as reference
The insolubility (det (A) = 0) is due to redundancy, i.e. not all µi’s can
be treated as unknowns
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Experiments on HgTe Quantum Wells

The Landauer-Büttiker formalism

Say we set µ4 = 0 (or gound)

e

h


−2 1 0 0 0 1
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 1 1 −2 1
1 0 0 0 1 −2




µ1
µ2
µ3
0
µ5
µ6

 = I14


1
0
0
−1
0
0


Remove extra equation by performing row reduction

e

h


−2 1 0 0 1
1 −2 1 0 0
0 1 −2 0 0
0 0 1 1 0
1 0 0 1 −2




µ1
µ2
µ3
µ5
µ6

 = I14


1
0
0
−1
0
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Experiments on HgTe Quantum Wells

The Landauer-Büttiker formalism

Solution of Matrix Equation
µ1
µ2
µ3
µ5
µ6

 = I14h

e


−2 1 0 0 1
1 −2 1 0 0
0 1 −2 0 0
0 0 1 1 0
1 0 0 1 −2


−1

1
0
0
−1
0




µ1
µ2
µ3
µ5
µ6

 = I14h

e


−3/2
−1
−1/2
−1/2
−1


Voltage difference across contacts i and j

Vij = 1
(−e) (µi − µj)
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Experiments on HgTe Quantum Wells

The Landauer-Büttiker formalism

Computation of two-terminal resistance R14,14

The voltage V14 is given by

V14 = 1
(−e) (µ1 − µ4)

= 1
(−e)

(
−3I14h

2e − 0
)

=
(

3h
2e2

)
I14

Therefore, the two-terminal resistance is

R14,14 ≡
V14

I14

= 3h
2e2
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Experiments on HgTe Quantum Wells

The Landauer-Büttiker formalism

Computation of four-terminal resistance R14,23

The voltage V23 is given by

V23 = 1
(−e) (µ2 − µ3)

= 1
(−e)

(
−I14h

e
−
(
−I14h

2e

))
=

(
h

2e2

)
I14

The four-terminal resistance is

R14,23 ≡
V23

I14

= h

2e2
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Experiments on HgTe Quantum Wells

The Landauer-Büttiker formalism

Changing contacts
For current passed between contacts 1 and 3, i.e. I1 = −I3 = I13 we get a
matrix equation (rest of the Ii = 0)

e

h


−2 1 0 0 1
1 −2 1 0 0
0 1 −2 0 0
0 0 1 1 0
1 0 0 1 −2


︸ ︷︷ ︸

A


µ1
µ2
µ3
µ5
µ6


︸ ︷︷ ︸

x

= I13


1
0
−1
0
0


︸ ︷︷ ︸

b

Different Convention

We only changed b compared to the previous matrix
equation
Ideally we should set µ3 = 0 instead of µ4. But this won’t
matter much
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Experiments on HgTe Quantum Wells

The Landauer-Büttiker formalism

Solution of Matrix Equation
µ1
µ2
µ3
µ5
µ6

 = I13h

e


−2 1 0 0 1
1 −2 1 0 0
0 1 −2 0 0
0 0 1 1 0
1 0 0 1 −2


−1

1
0
−1
0
0




µ1
µ2
µ3
µ5
µ6

 = I13h

e


−1
−1/3
1/3
−1/3
−2/3
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Experiments on HgTe Quantum Wells

The Landauer-Büttiker formalism

Computation of two-terminal resistance R13,13

The voltage V13 is given by

V13 = 1
(−e) (µ1 − µ3)

= 1
(−e)

(
−I13h

e
− I13h

3e

)
=

(
4h
3e2

)
I13

Therefore, the two-terminal resistance is

R13,13 ≡
V13

I13

= 4h
3e2
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Experiments on HgTe Quantum Wells

The Landauer-Büttiker formalism

Computation of four-terminal resistance R13,56

The voltage V56 is given by

V56 = 1
(−e) (µ5 − µ6)

= 1
(−e)

(
−I13h

3e −
(
−2I13h

3e

))
=

(
h

3e2

)
I13

The four-terminal resistance is

R13,56 ≡
V56

I13

= h

3e2
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Experiments on HgTe Quantum Wells

Comparison of Theory and Experiment
Summary of the different two- and four-terminal resistances

Rij,k` Expected value
R14,14 3h/2e2

R14,23 h/2e2

R13,13 4h/3e2

R13,56 h/3e2
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Theory of the Helical Edge State

“Helical” Liquid

Edge Hamiltonian

H =
∫

dk

2π

(
ψ†k,↑vkψk,↑ − ψ†k,↓vkψk,↓

)
+Hpert

Time-Reversal Symmetry (TRS) expressed as

T−1ψk,↑T = ψ−k,↓, T−1ψk,↓T = −ψ−k,↑

If Hpert does not respect TRS a simple “mass” term can be added

Hmass =
∫

dk

2πm
(
ψ†k,↑ψk,↓ + h.c.

)
but T−1HmassT = −Hmass

If Hpert respects TRS then it can only include 2n particle scattering
processes like ψ†k,↑ψ

†
k′,↑ψp,↓ψp′,↓

Tejas Deshpande (Caltech) The Quantum Spin Hall Effect January 13, 2013 34 / 38



Theory of the Helical Edge State

Z2 versus Z

In a topologically non-trivial system there must be odd number of
Kramers’ pairs crossing the Fermi energy

Say we had two copies of helical edge
states in TRS system

H =
∫

dk

2π
∑

s=1,2

(
ψ†k,s,↑vskψk,s,↑

− ψ†k,s,↓vskψk,s,↓

)
Hpert = ψ†k,s,↑ψ−k,s′,↓ is allowed only for
s 6= s′ and the follwing mass term can
gap out the system∫

dk

2πM
(
ψ†k,s,↑ψk,s′,↓ + h.c.

)

(a) (b)

(c) (d)

E E

E E

k k

k k
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Topological Insulators in Three Dimensions

Three-Dimensional Topological Insulators

Similar to HgTe band inversion predicted in
alloy BixSb1−x

Topological Band Theory (TBT) worked out
by Fu, Kane, and Mele
New topological invariant: (ν0; ν1ν2ν3) for
inversion symmetric materials
Bulk defects causes Fermi level to lie in the
middle of a band, i.e. cannot detect edge states
using transport
Angle-Resolved Photoemission Spectroscopy
(ARPES) can independently image surface and
bulk spectrum

Figure : ARPES on Bi2Se3.
Courtesy of Fisher Group
(Stanford)
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Conclusion and Outlook

Conclusion and Outlook

Experimental Work
So far experiments have only confirmed the existence of edge states in 2-D
and 3-D topological insulators
However, the intrinsic topological properties like

Fractional charge for the quantum spin Hall
Topological Kerr/Faraday effect
Topological magneto-electric effect
Monopole effect for 3-D topological insulators

have not been observed yet
Moreover, not all systems possessing topological order necessarily have
edge states

Theoretical Investigations
What new types of exotic phases are possible by introducing interaction?
Topological insulator

Anderson
Band
Crystalline

Crystalline
Kondo

Mott
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