Tejas Deshpande | Curriculum Vitae

2233 Tech Drive, 1171 Mudd – Evanston, IL 60208

🔊 (818) 659-5792 🔹 🖂 tejas@northwestern.edu 🔹 🖆 tejas.northwestern.edu

Education

California Institute of Technology (Caltech)	Pasadena
PhD, Development of Tools for Probing Order in Single Crystals Using Electron and Photon Spectroscopy	2011-2019
cperimental Condensed Matter Physics	
McGill University	Montreal
Bachelor of Engineering	2007-2011
Majored in Honors Electrical Engineering with minor in Physics	

Experience

GABRIELSE, GERACI & KOVACHY LABS

Postdoctoral fellow 2020-present I led the design and construction of an ultralight dark matter (UDM) detector at Northwestern University (NU), with Compton frequencies in the 20-90 kHz range, using ultralow vibration cryogenic optical cavities. This experiment (a.k.a. "cavity DM") recently improved on existing UDM bounds by an order of magnitude..

KOVACHY LAB

Postdoctoral fellow

Northwestern University

University of Southampton

Northwestern University

2019-present

- Tests of gravity and quantum mechanics (QM) on the 10 centimeter to one meter length scales using atom interferometry: I led the design and construction of a two meter tall atomic fountain, at NU, to perform precision measurements of Newton's gravitational constant ("big G") and tests of QM in curved spacetime. By employing state-of-the-art atom interferometry technology like large light-to-atom momentum transfer, spatially-resolved atom detection, and delta-kick cooling to picoKelvin temperatures, projected acceleration sensitivities are in the 10^{-10} m/s² range. A quantum sensor with such sensitivities will be combined with a well-characterized single-crystal gravitational source mass to reach a precision of under 10 parts per million (ppm) for big G measurement. An intermediate stage of this apparatus recently demonstrated resonant enhancement of an atom interferometer's sensitivity using multipath interference with a record 504 loops.
- 0 Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS) collaboration: I led the design and construction of the laser system for a 100 meter tall AF (MAGIS-100) at Fermilab. The goal of MAGIS-100 is to serve as a testbed for future kilometer-scale gravitational wave (GW) detectors operating in the 0.03-3 Hz frequency range. Moreover, MAGIS can be used to detect ultralight dark matter with Compton frequencies in the 0.03-3 Hz range. MAGIS-100 leverages the optical atomic clock technology developed for Strontium with fractional frequency stabilities better that 10^{-18} .
- Superconducting Quantum Material Systems (SQMS) center: I was involved in investigating the quantum sensing aspects of the MAGIS-100 and resonant atom interferometer projects. This involved development, simulation, and empirical testing of quantum optimal control protocols.

ULBRICHT LAB

Visiting postdoctoral fellow

2023-2023 I was involved in the upgrade of a Helium-3 cryostat used for superconducting levitation of millimeter-scale ferromagnets. The upgrade involved designing a vibration isolation system similar to that of the "cavity DM" apparatus. Once operational, this will be the first sub-Kelvin system with unprecedented vibration isolation. Moreover, during my month-long visit, I was involved in sample loading, (wet) cryogenic cooling, feedback cooling of the center of mass motion of the levitated ferromagnet, and data collection.

HSIEH LAB Graduate research assistant

Caltech 2011-2019

- Angle-resolved photoemission spectrocopy (ARPES) on topological superconductors: I led the design and construction of a sub-Kelvin and milli-eV (meV) energy resolution ARPES system to detect 3D topological superconductors by probing said superconductor's bulk energy gap and 2D (Majorana) surface states.
- **Rotationally anisotropic second harmonic generation (RA-SHG) on topological superconductors under hydrostatic pressure:** I studied phase transitions in crystalline materials, by studying breaking of electronic point group symmetries, by measuring the second order optical susceptibility, by monitoring the intensity of SHG from a crystalline sample, which is illuminated by a femtosecond laser, as a function of scattering plane angle and polarization of incident/reflected light. I customized a cryostat for performing RA-SHG on topological superconductors under hydrostatic pressure.

SZKOPEK LAB

McGill University

2010–2011 I investigated improvement of carrier mobility in graphene field effect transistors (FETs) as a function of substrate properties. I developed a recipe for integrating poly(vinylidene fluoride-co-trifluoroethylene) into graphene FET fabrication, performed current-voltage and capacitance-voltage characterization of graphene FETs at cryogenic temperatures, and modeled transport in graphene using the Landauer-Buttiker formalism.

Publications (including submitted)

2025: **T. Deshpande**, A. Ionescu, N. Miller, Z. Wang, G. Gabrielse, A. Geraci, and T. Kovachy. "Lower Limits on Ultralight Scalar Dark Matter from Optical Cavities." arXiv:2412.20623v1. Submitted to *Physical Review Letters*.

2024: Y. Wang,* J. Glick,* **T. Deshpande**,* K. DeRose,* S. Saraf, N. Sachdeva, K. Jiang, Z. Chen, and T. Kovachy. "Robust Quantum Control via Multipath Interference for Thousandfold Phase Amplification in a Resonant Atom Interferometer." *Physical Review Letters*, **133**, 243403. (* : equal author contribution).

2024: J. Glick, Z. Chen, **T. Deshpande**, Y. Wang, and T. Kovachy. "Coriolis force compensation and laser beam delivery for 100-meter baseline atom interferometry." *AVS Quantum Science*, **6**, 014402.

2023: G. Louie, Z. Chen, **T. Deshpande**, and T. Kovachy. "Robust atom optics for Bragg atom interferometry." *New Journal of Physics*, **25**, 083017.

2023: K. DeRose, **T. Deshpande**, Y. Wang, and T. Kovachy. "High-power, low-phase-noise, frequency-agile laser system for delivering fiber-noise-cancelled pulses for Strontium clock atom interferometry." *Optics Letters*, **48**, 3893.

2023: Z. Chen, G. Louie, Y. Wang, **T. Deshpande**, and T. Kovachy. "Enhancing strontium clock atom interferometry using quantum optimal control." *Physical Review A*, **107**, 063302.

2022: C. Li, X. Li, **T. Deshpande**, X. Li, N. Nair, J. G. Analytis, D. M. Silevitch, T. F. Rosenbaum, and D. Hsieh. "High pressure control of optical nonlinearity in the polar Weyl semimetal TaAs." *Physical Review B*, **106**, 014101.

2021: M. Abe *et al.* "Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)." *Quantum Science and Technology* **6**, 044003. I was one of **8 primary contributors** (experimental) to this paper's manuscript.

2018: K. Frohna,* **T. Deshpande**,* J. Harter,* W. Peng, B. A. Barker, J. B. Neaton, S. G. Louie, O. M. Bakr, D. Hsieh, and M. Bernardi. (2018). "Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals." *Nature Communications*, **9(1)**, 1829. (* : equal author contribution for theory and experiment).

2011: S. A. Imam, **T. Deshpande**, A. Guermoune, M. Siaj, and T. Szkopek (2011). "Charge transfer hysteresis in graphene dualdielectric memory cell structures." *Applied Physics Letters*, **99(8)**, 082109.

Publications in preparation

2025: D. Antypas *et al.* "New Horizons: Scalar and Vector Ultralight Dark Matter." arXiv:2203.14915. Review article to be submitted to *New Journal of Physics* "Quantum Technologies for Fundamental Physics."

2025: **T. Deshpande**, D. Kaplan, T. Kovachy, C. Overstreet, and S. Rajendran. "Proposal for detecting high-frequency vector dark matter using atom interferometry and suspended atom mirrors."

2025: K. DeRose, Y. Wang, **T. Deshpande**, and T. Kovachy. "Broadband passively-phase-stable amplitude modulation at high optical power using a double-passed acousto-optic modulator driven at two frequencies."

Invited talks

2025: Search for ultralight bosonic dark matter using two optical cavities. Society of Photographic Instrumentation Engineers (SPIE) Photonics West.

2023: *Quantum-control-enhanced metrology using resonant atom interferometry with Strontium*. University of California, Los Angeles (UCLA).

2023: Search for gravitational waves using resonant atom interferometry. SQMS annual meeting, Fermilab.

2023: *Towards tests of causal nonlinear quantum mechanics using light-pulse atom interferometry*. Quantum Technologies for Fundamental Physics, Erice, Italy.

2022: Detection of gravitational waves and dark matter using atom interferometry. University of Liverpool.

2022: Fundamental tests of gravity and quantum mechanics using atom interferometry. University of Southampton.

2022: Fundamental tests of gravity and quantum mechanics using atom interferometry. University of Florence.

2022: Progress toward development of a strontium atom interferometer for precise gravitational measurements. SPIE Photonics West.

2021: *Gravitational wave and dark matter detection using atom interferometry (MAGIS-100)*. Midwest Cold Atom Workshop, Purdue University.

Contributed talks

2023: T. Deshpande, K. DeRose, J. Glick, K. Jiang, N. Sachdeva, S. Saraf, Y. Wang, T. Kovachy. *Progress toward tests of gravity and quantum mechanics using atom interferometry with Strontium*. American Physical Society (APS) Division of Atomic, Molecular and Optical Physics (DAMOP) meeting.

2023: T. Deshpande, A. Ionescu, N. Miller, M. Nguyen, P. Parshi, R. Desalvo, T. Kovachy, A. Geraci, and G. Gabrielse. *Progress toward detection of ultralight dark matter with cryogenic optical cavities*. APS April meeting.

2022: T. Deshpande, A. Ionescu, N. Miller, R. Desalvo, T. Kovachy, B. Odom, A. Geraci, G. Gabrielse. *Progress toward detection of ultralight dark matter with cryogenic optical cavities*. APS DAMOP meeting.

2021: T. Deshpande on behalf of the MAGIS-100 collaboration. *Detection of gravitational waves and dark matter using atom interferometry (MAGIS-100)*. APS March meeting.

2021: T. Deshpande, K. DeRose, J. Glick, T. Kovachy. *Development of laser system for atom interferometric detection of gravitational waves and dark matter*. APS DAMOP meeting.

2021: T. Deshpande, Y. Wang, N. Sachdeva, G. Louie, J. Kangara, J. Glick, K. Fonseka, K. DeRose, T. Kovachy. *Progress toward development of a Strontium atom interferometer for performing short-distance tests of gravity*. APS DAMOP meeting.

2020: T. Deshpande, J. Kangara, J. Glick, K. DeRose, N. Sachdeva, Y. Wang, T. Kovachy. *Tests of gravity using a Strontium atom interferometer over 10 cm to 1 m length scales*. APS DAMOP meeting.

2018: T. Deshpande, J. Harter, K. Frohna, W. Peng, B. Barker, J. Neaton, S. G. Louie, O. M. Bakr, D. Hsieh, and M. Bernardi (2018). *Inversion symmetry in methylammonium lead iodide single crystals probed by second harmonic optical anisotropy*. APS March meeting.

2016: T. Deshpande, J. Harter, A. Fedorov, and D. Hsieh (2016). *Towards laser-based angle-resolved photoemission spectroscopy at ultralow temperatures*. APS March meeting.

2014: T. Deshpande, D. Torchinsky, L. Zhao, X. Ni, T. Qi, G. Cao, and D. Hsieh (2014). *A time- and wavelength-resolved optical pump-probe reflectivity study of the metal-to-insulator transition in* Sr_2IrO_4 . APS March meeting.

Posters

2022: T. Deshpande. *Towards measurement of gravity from suspended or levitated masses using ultracold atoms*. LeviNet conference.
2021: T. Deshpande, N. Sachdeva, G. Louie, J. Jachinowski, J. Kangara, J. Glick, K. Jiang, K. DeRose, S. Saraf, Y. Wang, Z. Chen, and T. Kovachy. *Tests of gravity using a Strontium atom interferometer over 10 cm to 1 m length scales*. Midwest Cold Atom Workshop.
2011: T. Deshpande, S. A. Imam, A. Guermoune, M. Siaj, and T. Szkopek. *Charge transfer in large area graphene on silicon nitride dielectrics*. Canadian Institute for Advanced Research meeting.

Awards

2018: R. K. Kar Award for Research in Physics, Caltech

2014-2016: Natural Sciences and Engineering Research Council of Canada (NSERC) graduate fellowship, Caltech

2010: NSERC Undergraduate Summer Research Award (USRA), McGill University

2009-2010: J. B. Woodyatt Scholarship, McGill University

2009: NSERC USRA, McGill University

2008-2009: Collins and Gilmour and McConnell Scholarships, McGill University

2007-2008: Dean's Honor List, McGill University